
Lesson 3 (III)
Fundamentals of assembler programming

Computer Structure

Bachelor in Computer Science and Engineering

ARCOS Group

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M2

 Basic concepts on assembly programming

 MIPS32 assembly language, memory model and data

representation

 Instruction formats and addressing modes

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Information of an instruction

ARCOS @ UC3M3

 The instructions:

 Its size is adjusted to one word or multiples words

 They are divided in fields:

 Operation to do

 Operands
 There can be implicit operands

 The instruction format:

 Form of representation of an instruction composed of fields

of binary numbers:

 The field size limits the number of values to encode

3

Félix García Carballeira, Alejandro Calderón Mateos

Information of an instruction

 Instruction set based on very few formats:
 Each instruction belongs to one of this available formats

 Example: 3 instruction formats in MIPS

op. rs rt rd shamt func.

op. rs rt offset

16 bits

op. offset

26 bits

5 bits 5 bits 5 bits 5 bits 6 bits6 bits

5 bits 5 bits6 bits

6 bits

Type R
arithmetic

Type J
branches

Type I
Immediate

transfer

4

ARCOS @ UC3M4

Félix García Carballeira, Alejandro Calderón Mateos

Instruction and pseudoinstruction in

MIPS32

ARCOS @ UC3M5

 An assembly instruction corresponds to a machine instruction
 A machine instruction occupies 32 bits
 Example: addi $t1, $t1, 2

 A pseudo-assembler instruction corresponds to one or several
machine instructions.

 Example 1:

 The instruction: move reg2, reg1

 It is equivalent to: add reg2, $zero, reg1

 Example 2:

 The instruction : li $t1, 0x00800010

 It does not fit in 32 bits, but it can be used as a pseudoinstruction.

 It is equivalent to:

 lui $t1, 0x0080

 ori $t1, $t1, 0x0010

Félix García Carballeira, Alejandro Calderón Mateos

Instruction fields

 Each field encodes:

 Operation (Operation code)

 Instruction and format used

 Operands

 Location of operands

 Location for results

 Location of next instruction (in branches)

 Implicit: PC PC + ‘4’ (next instruction)

 Explicit: j 0x01004 (PC modified)

6

ARCOS @ UC3M6

Félix García Carballeira, Alejandro Calderón Mateos

Locations of operands

ARCOS @ UC3M7

1. In the instruction
li $t0 0x123

2. In registers (processor)
li $t0 0x123

3. Main memory
lw $t0 address

4. Input/output modules
in $t0 0xFEB

7

1
2

3

4

Félix García Carballeira, Alejandro Calderón Mateos

Kinds of ways to said the locations of operands:

addressing modes

ARCOS @ UC3M8

1. In the instruction
li $t0 0x123

2. In registers (processor)
li $t0 0x123

3. Main memory
lw $t0 address

4. Input/output modules
in $t0 0xFEB

8

• Number representing an address

• Symbolic label representing an address

• (register): represents the address stored in the

register

• num(register): represents the address obtained

by adding num with the address stored in the

register

• label + num: represents the address obtained

by adding label with num

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M9

 Basic concepts on assembly programming

 MIPS32 assembly language, memory model and data

representation

 Instruction formats and addressing modes

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 Procedure that allows to localize the operands

 Types:

10 ARCOS @ UC3M

 Implicit

 Immediate

 Direct

 Indirect

 Relative

•To register

•To memory

•To index register

• Base register

•To PC

•To stack

•To register

•To memory

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes in MIPS

ARCOS @ UC3M11

 Immediate value

 Direct

 To memory address

 To register $r

 Indirect

 To memory

 To register ($r)

 Relative to

 register offset($r)

 stack offset($sp)

 PC beq … label1

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 Procedure that allows to localize the operands

 Types:

12 ARCOS @ UC3M

 Implicit

 Immediate

 Direct

 Indirect

 Relative

•To register

•To memory

•To index register

• Base register

•To PC

•To stack

•To register

•To memory

Félix García Carballeira, Alejandro Calderón Mateos

Implicit addressing

 The operand is not encoded in one field of instruction.

 Example (mips32): beqz $a0 label1
 If $a0 is zero, then branch to label

 $a0 is an operand, $zero is the other one

 G/B

 Good: It is fast because no extra memory access is required.

 Good: Instructions shorter

 Bad: limited options

op rs 16 bits

ARCOS @ UC3M13

Félix García Carballeira, Alejandro Calderón Mateos

Immediate addressing

 Operand is in one field of the instruction of instruction.

 Example (mips32): li $a0 0x25
 Load 0x25 in register $a0

 0x25 is the immediate value

 G/B

 Good: It is fast because no extra memory access is required.

 Bad: not always fits within a word

x

op rs 16 bits

ARCOS @ UC3M14

 li $t1, 0x00800010

 Equivalent to:
 lui $t1, 0x0080

 ori $t1, $t1, 0x0010

Félix García Carballeira, Alejandro Calderón Mateos

Register addressing

 Operand is in a register.

 Example (MIPS): move $a0 $a1
 $a0 and $a1 are encoded in the instruction

 G/B:

 Good: Faster access (no extra memory access required)

 Good: Small address field

 Bad: limited number of registers

op rs rt 16 bits

Regs.

operand

15

ARCOS @ UC3M15

Félix García Carballeira, Alejandro Calderón Mateos

Direct addressing

 Operand in memory. The instruction encodes the address.

 Example (MIPS): lw $t1, 0xFFF0
 Load in $t1 the word stored in address 0xFFF0

 G/B:

 Good: capacity is bigger than register file

 Bad: memory access time is larger than register access time

 Bad: large fields => large instructions

op rs rt 16 bits

memory

Operand

16

ARCOS @ UC3M16

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 Procedure that allows to localize the operands

 Types:

17 ARCOS @ UC3M

 Implicit

 Immediate

 Direct

 Indirect

 Relative

•To register

•To memory

•To index register

• Base register

•To PC

•To stack

• To register

•To memory

Félix García Carballeira, Alejandro Calderón Mateos

Register indirect addressing

ARCOS @ UC3M18

 The instruction has the register where the address is stored

 Example (MIPS): lw $a0 ($a1)
 Load in $a0 the word stored in

the address stored in $a1.

 G/B:

 Good: Small fields

 Good: address in a register can addressing the entire memory (32-bits registers)

 Bad: extra memory access (slow execution)

op rs rt 16 bits

memory

operand

address

Regs.

18

Félix García Carballeira, Alejandro Calderón Mateos

Indirect addressing

ARCOS @ UC3M19

 The instruction has the address where the operand address is
stored (not available in MIPS)

 Example: LD R1 [ADDR] (IEEE 694)

 Load in R1 the item stored in the address stored in ADDR

 G/B:

 Bad: several memory accesses are required

 Bad: slower instructions

 Good: large address space, addressing can be multilevel (e.g.: [[[.R1]]])

op address 1

Memory

Address 2

operand

19

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 Procedure that allows to localize the operands

 Types:

20 ARCOS @ UC3M

 Implicit

 Immediate

 Direct

 Indirect

 Relative

•To register

•To memory

• To index register

• Base register

•To PC

•To stack

•To register

•To memory

Félix García Carballeira, Alejandro Calderón Mateos

Base-register addressing

ARCOS @ UC3M21

Register ROp. cod.

Memory

Operand Memory address

Register file

Displacement

+

Example: lw $a0 12($t1)
❑ Load in $a0 the word stored in address: $t1 + 12

❑ $t1 represents the base address

21

Instruction

Félix García Carballeira, Alejandro Calderón Mateos

Index-register addressing

ARCOS @ UC3M22

Register ROp. cod.

Instruction

OperandIndex/displacement

Address

+

Example: lw $a0 address($t1)
❑ Load in $a0 the word stored in address: $t1 + address

❑ $t1 represents an index (offset from address)

22

Memory
Register file

Félix García Carballeira, Alejandro Calderón Mateos

Example (base/index)

23 ARCOS @ UC3M

int v[5] ;

main ()

{

v[3] = 5 ;

v[4] = 8 ;

}

.data

v: .space 20 # 5int*4bytes/int

.text

.globl main

main:

la $t0 v

li $t1 5

sw $t1 12($t0)

la $t0 16

li $t1 8

sw $t1 v($t0)

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing

ARCOS @ UC3M24

 The program counter (PC):

 Registers of 32 bits (4 bytes) in a 32-bits computer.

 PC stores the address of the next instruction to be executed

 Points to a word (4 bytes) in memory with the instruction to be executed

 PC in a 32-bits computer is updated by default as PC = PC + 4
memory

instruction

address

PC

Address: Instruction:

0x00400000 or $2,$0,$0

0x00400004 slt $8,$0,$5

0x00400008 beq $8,$0,3

0x0040000c add $2,$2,$4

0x00400010 addi $5,$5,-1

0x00400014 j 0x100001

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing

ARCOS @ UC3M25

 Example: beqz $a0 label

 The assembler encode label as the offset from the beqz instruction to the

memory position associated to label.

 Label encoded as displacement (address -> # instructions to jump)

 If $a0 is 0, then PC <- PC + “offset”

op rs rt offset

memory

instruction

address

PC

+

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing in MIPS

 Instruction beq $9, $0, label is encoded as:

 When $t0 == $1, what is the value for end label?
loop: beq $t0,$1, end

add $t8,$t4,$t4

addi $t0,$0,-1

j loop

end: …

 Label must be encoded in an “immediate” field

26

immediate

16

CO rs rt

6 5 5

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing in MIPS

 Instruction beq $9, $0, label is encoded as:

 When $t0 == $1, end is 3 (“number of instructions to skip”)

loop: beq $t0,$1, end

...

end: …

 Reasons:
 When an instruction is going to be executed, PC has the addresss of

next instruction in memory

 When the condition in satisfied: PC = PC + (label* 4)

27

immediate

16

CO rs rt

6 5 5

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Use in loops

28

li $t0 8

li $t1 4

li $t2 1

li $t4 0

while: bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

end: move $t2 $t4

ARCOS @ UC3M

 end represents the

address where the
instruction move is

stored

 while represents the

address where the
instruction bge is

stored

Félix García Carballeira, Alejandro Calderón Mateos

Use in loops

29

li $t0 8

li $t1 4

li $t2 1

li $t4 0

while: bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

end: move $t2 $t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li $t0 8

li $t1 4

li $t2 1

li $t4 0

bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

move $t2 $t4

Address Content

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Use in loops

30

li $t0 8

li $t1 4

li $t2 1

li $t4 0

while: bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

end: move $t2 $t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li $t0 8

li $t1 4

li $t2 1

li $t4 0

bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

move $t2 $t4

• end encoded as displacement relative to

current PC => 3

PC = PC + 3 * 4

• while encoded as displacement relative

to current PC => -4

PC = PC + (-4)*4

Address Content

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Use in loops

31

li $t0 8

li $t1 4

li $t2 1

li $t4 0

while: bge $t4 $t1 end

mul $t2 $t2 $t0

addi $t4 $t4 1

b while

end: move $t2 $t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li $t0 8

li $t1 4

li $t2 1

li $t4 0

bge $t4 $t1 3

mul $t2 $t2 $t0

addi $t4 $t4 1

b -4

move $t2 $t4

• end encoded as displacement relative to

current PC => 3

PC = PC + 3 * 4

• while encoded as displacement relative

to current PC => -4

PC = PC + (-4)*4

Address Content

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Differences between b and j instructions

32

op. displacement

16 bits

op. address

26 bits

5 bits 5 bits6 bits

6 bits

• Instruction j address

• Instruction b displacement

Branch address => PC = address

Branch address => PC = PC + displacement

ARCOS @ UC3M

Stack addressing

top $sp

PUSH Reg

Stack grows to lower memory addresses

item

top

$sp

Push the content of a register (item)

33

ARCOS @ UC3M33

Stack addressing

item

top

$sp

POP Reg

Stack grows to lower memory addresses

item

top $sp

Pop the top of the stack (item)

Copy the element in a Reg

34

ARCOS @ UC3M34

Félix García Carballeira, Alejandro Calderón Mateos

Stack addressing

ARCOS @ UC3M35

 MIPS does not have PUSH or POP instructions

 The stack pointer ($sp) is visible

 We assume that $sp points to the last element in the stack

 Push -> allocate new word + store a value

 Pop -> retrieve a value + deallocate a word

35

PUSH $t0

sub $sp, $sp, 4

sw $t0, ($sp)

POP $t0

lw $t0, ($sp)

add $sp, $sp, 4

35

Félix García Carballeira, Alejandro Calderón Mateos

Examples of addressing types

 la $t0 label immediate

 The second operand is an address

 But this address is not accessed, the address is the operand

 lw $t0 label direct

 The second operand is an address

 A memory access is required to obtain the final operand

 bne $t0 $t1 label PC-relative

 Last operand represents a displacement

 Label is encoded as a number that represents a displacement
relative to PC

36

ARCOS @ UC3M36

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M37

 Basic concepts on assembly programming

 MIPS32 assembly language, memory model and data

representation

 Instruction formats and addressing modes

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Instruction format

38

 A machine instruction is divided in fields

 A machine instruction includes:

 Operation code

 Operands

 How the operands are represented

 Results

 Address of the next instruction

 Example in MIPS:

ARCOS @ UC3M

op. rs rt rd shamt func.Type R
arithmetic

Félix García Carballeira, Alejandro Calderón Mateos

Instruction format

39

 The format specifies, for each field in the instruction:

 The meaning of each field

 The number of bits of each field

 How is encoded each field

 binary, 1’s complement, displacement w.r.t. …

 Usually:

 Very few formats in order to simplify the control unit design.

 Fields of the same type have the same length.

 Operation code is the first field (of first word)

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Format length

 The format length is number of bits to encode the instruction

 The size of an instruction is usually one word,
but there can be instructions of several words

 In MIPS32 the size of all instructions is one word (32 bits)

 Two types:

 Fixed/Unique length:

 All instructions with the same size

 Examples:

 MIPS32 (32 bits), PowerPC (32 bits), …

 Variable length:

 Different instructions can have different sizes

 How to know the instruction length? → Op. code

 Examples:

 IA32 (Intel processors): variable number of bytes

40

40

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Operation code

 Fixed size:
 n bits ➔ 2n operation codes

 m operation codes ➔ log2m bits.

 Extension fields
 MIPS (arithmetic-logic instructions)

 Op = 0; The instruction is encoded in func

 Variable sizes:
 More frequent instructions= shorter sizes

41

41

op. rs rt rd shamt func.Type R
arithmetic

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Example: MIPS instruction formats

42

42

CO rs rt

immediate

6 5 5

16

rd

5

func

6

sa

5

CO

6

immediate

26

CO rs rt

6 5 5 addi $t0, $t0, 1

add $t0, $t0, $t1

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Example of MIPS formats

43

◼ MIPS Instruction:
❑ add $8,$9,$10

❑ Format:

0 9 10 8 320

Binary representation

Decimal representation:

000000 01001 01010 01000 10000000000

CO rs rt

6 5 5

rd

5

func

6

sa

5

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

Example of MIPS formats

44

◼ MIPS Instruction:
❑ addi $21,$22,-50

❑ Format:

Binary representation

Decimal representation:

immediate

16

CO rs rt

6 5 5

8 22 21 -50

001000 10110 10101 1111111111001110

ARCOS @ UC3M

Félix García Carballeira, Alejandro Calderón Mateos

How to use the addi instruction with 32 bits

values?

ARCOS @ UC3M45

 What happens when this instruction is used in a program?

 addi $t0,$t0, 0xABABCDCD

 The immediate value has 32 bits.

This instruction cannot be encoded in one word (32 bits)

Félix García Carballeira, Alejandro Calderón Mateos

How to use the addi instruction with 32 bits

values?

ARCOS @ UC3M46

 What happens when this instruction is used in a program?

 addi $t0,$t0, 0xABABCDCD

 The immediate value has 32 bits.

This instruction cannot be encoded in one word (32 bits)

 Solution:

 This instruction is translated to:

lui $at, 0xABAB

ori $at, $at, 0xCDCD

add $t0, $t0, $at

 The $at is reserved to the assembler

Félix García Carballeira, Alejandro Calderón Mateos

Example

 A 16-bit computer has an instruction set of 60 instructions

and a register bank with 8 registers.

 Define the format of this instruction: ADDx R1 R2 R3,

where R1, R2 and R3 are registers.

47

ARCOS @ UC3M47

Félix García Carballeira, Alejandro Calderón Mateos

Solution

 Word of 16 bits

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

16 bits

48

ARCOS @ UC3M48

Félix García Carballeira, Alejandro Calderón Mateos

Solution

 To encode 60 instructions, 6 bits are required for the

operation code

16 bits

6 bits

Operation

code

49

ARCOS @ UC3M49

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Solution

 To encode 8 registers, 3 bits are required

16 bits

6 bits 3 bits 3 bits 3 bits

Operation

code

Operands (3 registers)

50

ARCOS @ UC3M50

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Solution

 Spare one bit (16-6-3-3-3 = 1)

16 bits

6 bits 3 bits 3 bits 3 bits 1 bit

Operation

code

Operands (3 registers)

51

ARCOS @ UC3M51

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Instruction sets

ARCOS @ UC3M52

 There are different ways for the classification of

the instructions sets.

 For example:

 By complexity of the instruction set

 CISC vs RISC

 By available execution modes

Félix García Carballeira, Alejandro Calderón Mateos

CISC-RISC

 CISC: Complex Instruction Set Architecture (http://es.wikipedia.org/wiki/RISC)

 Many instructions

 Complex instructions

 Irregular design

 RISC: Reduced Instruction Set Code (http://es.wikipedia.org/wiki/CISC)

 Simple instructions

 Very few instructions

 Instructions with fixed size

 Many registers

 Most of instructions use registers

 Parameters are passed using registers

 Pipelined architectures

53

ARCOS @ UC3M53

http://es.wikipedia.org/wiki/RISC
http://es.wikipedia.org/wiki/CISC

Félix García Carballeira, Alejandro Calderón Mateos

Execution modes

 The execution modes indicates the number of operands
and the type of operands that can be specified in an
instruction.

 0 addresses → Stack.

PUSH 5; PUSH 7; ADD

 1 address → Accumulator register.

ADD R1 -> AC <- AC + R1

 2 addresses → Registers, Register-memory, Memory-memory.

ADD .R0, .R1 (R0 <- R0 + R1)

 3 addresses → Registers, Register-memory, memory-memory.

ADD .R0, .R1, .R2

54

54

ARCOS @ UC3M

Lesson 3 (III)
Fundamentals of assembler programming

Computer Structure

Bachelor in Computer Science and Engineering

ARCOS Group

