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Modes of execution
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 It is indicated by a bit in the status register (U)

 At least 2 modes:

 User Mode

 The processor cannot execute privileged instructions 

(e.g.: I/O instructions, interrupt enable instructions, ...)

 If a user process executes a privileged instruction, an 

interruption (exception) occurs

 Kernel Mode

 Reserved to the operating system

 The processor can execute the entire repertoire of 

instructions
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Activation of the status register
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SR (C V N Z I U) 

Output

O’ N’ Z’ I’ U’ 

SELEC operation:

if (SelP1 = 1  AND SelP0 == 1)

Output = C’ V’ N’ Z’ I U

if (SelP1 == 1 AND SelP0 ==0)

Output = C V N Z I’ U

if (SelP1 == 0  AND SelP0 == 1)

Output = C V N Z I U’ 
I U
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Interrupts
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mul $a0 $a2 4

sub $a0 $a0 1

…

ARCOS @ UC3M

rti_disk:

li $a0

…

reti

 Condition detected by the Control Unit that breaks the normal execution sequence:

 The current program is stopped.

 The execution is transferred to another program that attend the interruption (Interrupt 
Service Routine a.k.a. ISR)

 When the ISR ends, the execution of the interrupted program is resumed.

 Example of causes:
 When a peripheral requests the attention of the processor,

 When an error occurs in the execution of the instruction, Etc.
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Classification of interruptions
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 Synchronous hardware exceptions
 When an error occurs in the execution of the instruction:

Division by zero, access to an illegal memory position, illegal 
instruction, etc.

 Asynchronous hardware exceptions
 Faults or errors in hardware not related to current instruction:

printer without paper, power failure, etc.

 External interruptions
 When a peripheral (or CPU) requests the attention of the CPU:

Peripherals, clock interruption

 System calls
 Request an operating system service

 Special machine instructions that generate an interruption to activate the 
operating system
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Asynchronous Hardware Exceptions 

and External Interrupts
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 They cause an unscheduled 
sequence break
 Before doing the fetch 

cycle, first see if there is 
any pending interruption, 
and if so...

 ...Bifurcation to subroutine of 
the O.S. that treats it 

 It then restores the status 
and returns control to the 
interrupted program.

• Asynchronous cause 
to the execution of 
the current program
 Peripheral care

 Etc.

SSOO

App1

…

…

li $a0 1
fetch

mul $a0 $a2 4
fetch

sub $a0 $a0 1
fetch

…

rti_disk:

li $a0…..

…

ARCOS @ UC3M
Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen
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Synchronous Hardware Exceptions

and System Calls
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 They cause an unscheduled 
sequence break

 Within the microprogram 

of the ongoing instruction...

 ...Bifurcation to subroutine of 
the O.S. that treats it 

 It restores the status and 
returns control to the 
interrupted program or ends 
its execution

• Synchronous cause to 
the execution of the 
current program

 Division between zero

 Etc.

SSOO

App1

…

…

li $a0 0
fetch

li $a1 0
fetch

div $a2 $a0 $a1 #¡0/0!
fetch

…

rte_div0:

li $a0…..

…

ARCOS @ UC3M
Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen
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Activation of the status register
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Lectura de la
 instrucción

Arranque

Interrupciones
habilitadas

Interrupciones
inhabilitadas

Parada

Ejecución de
la instrucción

Ciclo de
reconocimiento

de la interrupción

It is indicated by a bit located in the status register (I)

Start Instruction

read

Disabled 

Interruptions    

Execution

Stop

Enabled 

Interruptions    

interrupt 

acknowledge 

cycle
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Activation of the status register
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SR (C V N Z I U) 

Output

O’ N’ Z’ I’ U’ 

SELEC operation:

if (SelP1 = 1  AND SelP0 == 1)

Output = C’ V’ N’ Z’ I U

if (SelP1 == 1 AND SelP0 ==0)

Output = C V N Z I’ U

if (SelP1 == 0  AND SelP0 == 1)

Output = C V N Z I U’ 
I U
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Interrupt Acknowledge Cycle (IAC)
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 It is a microcode before the fetch cycle

 It handles the asynchronous interrupts

 General structure of the IAC:

1. Checks if an interruption signal is activated.

2. If it is activated:

1. Saves the program counter and status register
 Equivalent to “push pc, push sr”

2. Switches from user mode to kernel mode
 Equivalent to “SR.U = 0”

3. Obtains the address of the Interrupt Service Routine (ISR)
 Equivalent to “isr_addr = Vector_interrupts[id_interrupt]“

4. Store the address obtained in the program counter (this way the 

following instruction will be the first one for the treatment routine)
 Equivalent to “PC = isr_addr”

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen
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Interrupt Service Routine (ISR)
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 It is part of the operating system code

 There is one ISR for each interruption that may occur

 General structure of the ISR:

1. Saves the rest of the processor registers (if required)

2. Service the interrupt

3. Restores processor registers saved in (2)

4. Executes a special machine instruction: RETI

 Resets the status register of the interrupted program (by 

setting the processor mode back to user mode).

 Resets the program counter (so that the next instruction is 

that of the interrupted program).

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen
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Vector interrupts
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Unidad de 
Control

Memoria del 
sistema operativo

Elemento que
 interrumpe

INT

vector

vector

Rutina de tratamiento 
de la interrupción

Interrupt

Element

Control  

Unit

Operating System

Memory

Interrupt

Handler
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Vector interrupts
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 The interrupting element supplies the interrupt vector

 This vector is an index in a table containing the address 

of the interrupt handler routine. 

 The Control Unit reads the content of this entry and 

loads the value into the PC

 Each operating system fills this table with the addresses of 

each of the treatment routines, which are dependent on 

each operating system.
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Interrupts in Windows
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Interrupts by Software. 

System calls and operating systems
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 The system call mechanism is the one that allows user 

programs to request the services offered by the operating 

system

 Load programs into memory for execution

 Access to peripheral devices

 Etc.

 Similar to the system calls offered by the CREATOR 

simulator

 WepSIM examples show how system calls are internally 

implemented.

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen
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Interrupts by Software.

System calls (example: Linux)
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Modo Usuario

Modo Kernel

…
close(fd) ;

Aplicación

close(int desc)  {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

User mode

Kernel mode
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Interrupts by Software.

System calls (example: Linux)
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Modo Usuario

Modo Kernel

…
close(fd) ;

Aplicación

close(int desc)  {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

Instruction that causes
an interrupt by software

User mode

Kernel mode
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Interrupts by Software.

System calls (example: Linux)
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sys_close()

Modo Usuario

Modo Kernel

_system_call( )
• sys_call_table(%eax)
• ret_from_sys_call

…
close(fd) ;

Aplicación

close(int desc)  {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

_sys_call_table

Instruction that causes
an interrupt by software

User mode

Kernel mode
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Interrupts by Software.

System calls (example: Linux)
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sys_close()

Modo Usuario

Modo Kernel

_system_call( )
• sys_call_table(%eax)
• ret_from_sys_call

…
close(fd) ;

Application

close(int desc)  {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

_sys_call_table

_ret_from_syscall
• … scheduling

Instruction that causes
an interrupt by software

User mode

Kernel mode



Alejandro Calderón MateosFélix García-Carballeira,

Clock interrupts and operating system 
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 The signal that governs the execution of machine 
instructions is divided by a frequency divider to generate 
an external interruption every certain time interval (a few 
milliseconds)

 These clock interruptions or ticks are periodic 
interruptions that allow the operating system to come in 
and run periodically, preventing a user program from 
monopolizing the CPU
 Allows to alternate the execution of various programs on a 

system given the appearance of simultaneous execution

 Each time a clock interruption arrives, the program is suspended 
and the operating system that runs the scheduler is skipped to 
decide the next program to run

Example in WepSIM: clock usage…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=14&simulator=assembly:screen
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Computer booting
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

ROM
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Computer booting
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

ROM
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Computer booting

ARCOS @ UC3M27

 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

ROM

O.S.L.
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Computer booting
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed: 

 Sets boot options

ROM

O.S.L.
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Computer booting
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed: 

 Sets boot options

 Loads the loading program 

ROM

O.S.L.

L.P.
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Computer booting
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed: 

 Sets boot options

 Loads the loading program 

 The Loading Program is executed:

 Sets the initial state of the O.S.

 Loads the O.S. and executed it.

ROM

O.S.L.

L.P.

Rest
O.S.



Alejandro Calderón MateosFélix García-Carballeira,

Computer booting
summary
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 The Reset loads the predefined values in registers:

 PC ← initial address of the  

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed: 

 Sets boot options

 Loads the loading program 

 The Loading Program is executed:

 Sets the initial state of the O.S.

 Loads the O.S. and executed it.

ROM

O.S.L.

L.P.

Rest
O.S.
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Program execution time
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 IN is the number of instructions of the program

 CPI is the average number of clock cycles 
to execute an instruction

 tcycle_CPI is the cycle clock duration

 AMI is the average number of memory access 
per instruction

 tcycle_mem is the time needed for a memory access

Timeexecution = IN × CPI × tcycle_CPU +  IN × AMI × tcycle_mem
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Factors affecting execution time
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IN CPI tcycle_CPI AMI tcycle_mem

Program

Compiler

Instruction set

Organization

Technology
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Model of processor based on datapath

(without internal bus)
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Instructions 

memory

PC

+4

Register file
Data 

memory
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Instruction level parallelism
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 Concurrent execution of several machine instructions

 Combination of elements working in parallel:

 Pipelined processor: use pipelines in which multiple 

instructions are overlapped in execution

 Superscalar processor: multiple independent instruction 

pipelines are used. Each pipeline can handle multiple 

instructions at a time

 Multicore processor: several processors or cores in the 

same chip
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Segmentation of instructions
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 Stages in the execution of instructions:

 IF: Instruction fetch 

 D: Decoding

 RO: Read operands

 EX: Execution

 WO: Write operands
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Segmentation of instructions
without pipeline

ARCOS @ UC3M38

 Stages in the execution of instructions:

 IF: Instruction fetch 

 D: Decoding

 RO: Read operands

 EX: Execution

 WO: Write operands

IF D RO EX WO

Time

IF D RO EX WO
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Segmentation of instructions
without pipeline
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 If each phase takes N clock cycles, then:

 One instruction takes 5*N clock cycles to be executed

 1/5 of instruction is issued every N clock cycles 

IF D RO EX WO

Time

IF D RO EX WO
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Segmentation of instructions
with pipeline
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 If each phase takes N clock cycles, then:

 One instruction takes 5*N clock cycles to be executed

 One instruction is issued every N clock cycles 

IF D RO EX WO

Time

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO



Alejandro Calderón MateosFélix García-Carballeira,

Superscalar
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 Pipeline with several functional units in parallel

IF D RO EX WO

Time

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO
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Multicore
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 Multiples processors in the same chip



Alejandro Calderón MateosFélix García-Carballeira,

Multicore
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 Multiples processors in the same chip

http://wccftech.com/intel-knights-landing-detailed-16-gb-highbandwidth-ondie-memory-384-gb-ddr4-system-memory-support-8-billion-transistors/

http://wccftech.com/intel-knights-landing-detailed-16-gb-highbandwidth-ondie-memory-384-gb-ddr4-system-memory-support-8-billion-transistors/
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