
Lesson 4 (III)

The processor

Computer Structure

Bachelor in Computer Science and Engineering

ARCOS Group

Alejandro Calderón MateosFélix García-Carballeira,

Contents

2

1. Computer elements

2. Processor organization

3. Control unit

4. Execution of instructions

5. Control unit design

6. Execution modes

7. Interrupts

8. Computer startup

9. Performance and parallelism

ARCOS @ UC3M

Alejandro Calderón MateosFélix García-Carballeira,

Contents

3

1. Computer elements

2. Processor organization

3. Control unit

4. Execution of instructions

5. Control unit design

6. Execution modes

7. Interrupts

8. Computer startup

9. Performance and parallelism

ARCOS @ UC3M

Alejandro Calderón MateosFélix García-Carballeira,

Modes of execution

ARCOS @ UC3M4

 It is indicated by a bit in the status register (U)

 At least 2 modes:

 User Mode

 The processor cannot execute privileged instructions

(e.g.: I/O instructions, interrupt enable instructions, ...)

 If a user process executes a privileged instruction, an

interruption (exception) occurs

 Kernel Mode

 Reserved to the operating system

 The processor can execute the entire repertoire of

instructions

Alejandro Calderón MateosFélix García-Carballeira,

Activation of the status register

ARCOS @ UC3M5

SR (C V N Z I U)

Output

O’ N’ Z’ I’ U’

SELEC operation:

if (SelP1 = 1 AND SelP0 == 1)

Output = C’ V’ N’ Z’ I U

if (SelP1 == 1 AND SelP0 ==0)

Output = C V N Z I’ U

if (SelP1 == 0 AND SelP0 == 1)

Output = C V N Z I U’
I U

Alejandro Calderón MateosFélix García-Carballeira,

Contents

6

1. Computer elements

2. Processor organization

3. Control unit

4. Execution of instructions

5. Control unit design

6. Execution modes

7. Interrupts

8. Computer startup

9. Performance and parallelism

ARCOS @ UC3M

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts

7

mul $a0 $a2 4

sub $a0 $a0 1

…

ARCOS @ UC3M

rti_disk:

li $a0

…

reti

 Condition detected by the Control Unit that breaks the normal execution sequence:

 The current program is stopped.

 The execution is transferred to another program that attend the interruption (Interrupt
Service Routine a.k.a. ISR)

 When the ISR ends, the execution of the interrupted program is resumed.

 Example of causes:
 When a peripheral requests the attention of the processor,

 When an error occurs in the execution of the instruction, Etc.

Alejandro Calderón MateosFélix García-Carballeira,

Classification of interruptions

ARCOS @ UC3M8

 Synchronous hardware exceptions
 When an error occurs in the execution of the instruction:

Division by zero, access to an illegal memory position, illegal
instruction, etc.

 Asynchronous hardware exceptions
 Faults or errors in hardware not related to current instruction:

printer without paper, power failure, etc.

 External interruptions
 When a peripheral (or CPU) requests the attention of the CPU:

Peripherals, clock interruption

 System calls
 Request an operating system service

 Special machine instructions that generate an interruption to activate the
operating system

Alejandro Calderón MateosFélix García-Carballeira,

Asynchronous Hardware Exceptions

and External Interrupts

9

 They cause an unscheduled
sequence break
 Before doing the fetch

cycle, first see if there is
any pending interruption,
and if so...

 ...Bifurcation to subroutine of
the O.S. that treats it

 It then restores the status
and returns control to the
interrupted program.

• Asynchronous cause
to the execution of
the current program
 Peripheral care

 Etc.

SSOO

App1

…

…

li $a0 1
fetch

mul $a0 $a2 4
fetch

sub $a0 $a0 1
fetch

…

rti_disk:

li $a0…..

…

ARCOS @ UC3M
Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Synchronous Hardware Exceptions

and System Calls

10

 They cause an unscheduled
sequence break

 Within the microprogram

of the ongoing instruction...

 ...Bifurcation to subroutine of
the O.S. that treats it

 It restores the status and
returns control to the
interrupted program or ends
its execution

• Synchronous cause to
the execution of the
current program

 Division between zero

 Etc.

SSOO

App1

…

…

li $a0 0
fetch

li $a1 0
fetch

div $a2 $a0 $a1 #¡0/0!
fetch

…

rte_div0:

li $a0…..

…

ARCOS @ UC3M
Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Activation of the status register

ARCOS @ UC3M11

Lectura de la
 instrucción

Arranque

Interrupciones
habilitadas

Interrupciones
inhabilitadas

Parada

Ejecución de
la instrucción

Ciclo de
reconocimiento

de la interrupción

It is indicated by a bit located in the status register (I)

Start Instruction

read

Disabled

Interruptions

Execution

Stop

Enabled

Interruptions

interrupt

acknowledge

cycle

Alejandro Calderón MateosFélix García-Carballeira,

Activation of the status register

ARCOS @ UC3M12

SR (C V N Z I U)

Output

O’ N’ Z’ I’ U’

SELEC operation:

if (SelP1 = 1 AND SelP0 == 1)

Output = C’ V’ N’ Z’ I U

if (SelP1 == 1 AND SelP0 ==0)

Output = C V N Z I’ U

if (SelP1 == 0 AND SelP0 == 1)

Output = C V N Z I U’
I U

Alejandro Calderón MateosFélix García-Carballeira,

Interrupt Acknowledge Cycle (IAC)

ARCOS @ UC3M13

 It is a microcode before the fetch cycle

 It handles the asynchronous interrupts

 General structure of the IAC:

1. Checks if an interruption signal is activated.

2. If it is activated:

1. Saves the program counter and status register
 Equivalent to “push pc, push sr”

2. Switches from user mode to kernel mode
 Equivalent to “SR.U = 0”

3. Obtains the address of the Interrupt Service Routine (ISR)
 Equivalent to “isr_addr = Vector_interrupts[id_interrupt]“

4. Store the address obtained in the program counter (this way the

following instruction will be the first one for the treatment routine)
 Equivalent to “PC = isr_addr”

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Interrupt Service Routine (ISR)

ARCOS @ UC3M14

 It is part of the operating system code

 There is one ISR for each interruption that may occur

 General structure of the ISR:

1. Saves the rest of the processor registers (if required)

2. Service the interrupt

3. Restores processor registers saved in (2)

4. Executes a special machine instruction: RETI

 Resets the status register of the interrupted program (by

setting the processor mode back to user mode).

 Resets the program counter (so that the next instruction is

that of the interrupted program).

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Vector interrupts

ARCOS @ UC3M15

Unidad de
Control

Memoria del
sistema operativo

Elemento que
 interrumpe

INT

vector

vector

Rutina de tratamiento
de la interrupción

Interrupt

Element

Control

Unit

Operating System

Memory

Interrupt

Handler

Alejandro Calderón MateosFélix García-Carballeira,

Vector interrupts

ARCOS @ UC3M16

 The interrupting element supplies the interrupt vector

 This vector is an index in a table containing the address

of the interrupt handler routine.

 The Control Unit reads the content of this entry and

loads the value into the PC

 Each operating system fills this table with the addresses of

each of the treatment routines, which are dependent on

each operating system.

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts in Windows

ARCOS @ UC3M17

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts by Software.

System calls and operating systems

ARCOS @ UC3M18

 The system call mechanism is the one that allows user

programs to request the services offered by the operating

system

 Load programs into memory for execution

 Access to peripheral devices

 Etc.

 Similar to the system calls offered by the CREATOR

simulator

 WepSIM examples show how system calls are internally

implemented.

Example in WepSIM: int, syscall, exception…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=12&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts by Software.

System calls (example: Linux)

ARCOS @ UC3M19

Modo Usuario

Modo Kernel

…
close(fd) ;

Aplicación

close(int desc) {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

User mode

Kernel mode

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts by Software.

System calls (example: Linux)

ARCOS @ UC3M20

Modo Usuario

Modo Kernel

…
close(fd) ;

Aplicación

close(int desc) {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

Instruction that causes
an interrupt by software

User mode

Kernel mode

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts by Software.

System calls (example: Linux)

ARCOS @ UC3M21

sys_close()

Modo Usuario

Modo Kernel

_system_call()
• sys_call_table(%eax)
• ret_from_sys_call

…
close(fd) ;

Aplicación

close(int desc) {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

_sys_call_table

Instruction that causes
an interrupt by software

User mode

Kernel mode

Alejandro Calderón MateosFélix García-Carballeira,

Interrupts by Software.

System calls (example: Linux)

ARCOS @ UC3M22

sys_close()

Modo Usuario

Modo Kernel

_system_call()
• sys_call_table(%eax)
• ret_from_sys_call

…
close(fd) ;

Application

close(int desc) {
MOVE %eax, #NUM_CLOSE
MOVE %ebx, desc
INT 0x80
%eax = returned value
RET

} …

libc.so

_sys_call_table

_ret_from_syscall
• … scheduling

Instruction that causes
an interrupt by software

User mode

Kernel mode

Alejandro Calderón MateosFélix García-Carballeira,

Clock interrupts and operating system

ARCOS @ UC3M23

 The signal that governs the execution of machine
instructions is divided by a frequency divider to generate
an external interruption every certain time interval (a few
milliseconds)

 These clock interruptions or ticks are periodic
interruptions that allow the operating system to come in
and run periodically, preventing a user program from
monopolizing the CPU
 Allows to alternate the execution of various programs on a

system given the appearance of simultaneous execution

 Each time a clock interruption arrives, the program is suspended
and the operating system that runs the scheduler is skipped to
decide the next program to run

Example in WepSIM: clock usage…

https://wepsim.github.io/wepsim/ws_dist/wepsim-classic.html?mode=ep&examples_set=Default-MIPS&example=14&simulator=assembly:screen

Alejandro Calderón MateosFélix García-Carballeira,

Contents

24

1. Computer elements

2. Processor organization

3. Control unit

4. Execution of instructions

5. Control unit design

6. Execution modes

7. Interrupts

8. Computer startup

9. Performance and parallelism

ARCOS @ UC3M

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M25

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

ROM

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M26

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

ROM

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M27

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

ROM

O.S.L.

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M28

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed:

 Sets boot options

ROM

O.S.L.

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M29

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed:

 Sets boot options

 Loads the loading program

ROM

O.S.L.

L.P.

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting

ARCOS @ UC3M30

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed:

 Sets boot options

 Loads the loading program

 The Loading Program is executed:

 Sets the initial state of the O.S.

 Loads the O.S. and executed it.

ROM

O.S.L.

L.P.

Rest
O.S.

Alejandro Calderón MateosFélix García-Carballeira,

Computer booting
summary

ARCOS @ UC3M31

 The Reset loads the predefined values in registers:

 PC ← initial address of the

initialization program (in ROM memory)

 The initialization program is executed:

 System test (POST)

 Load into memory the

operating system loader (MBR)

 The Operating System Loader is executed:

 Sets boot options

 Loads the loading program

 The Loading Program is executed:

 Sets the initial state of the O.S.

 Loads the O.S. and executed it.

ROM

O.S.L.

L.P.

Rest
O.S.

Alejandro Calderón MateosFélix García-Carballeira,

Contents

32

1. Computer elements

2. Processor organization

3. Control unit

4. Execution of instructions

5. Control unit design

6. Execution modes

7. Interrupts

8. Computer startup

9. Performance and parallelism

ARCOS @ UC3M

Alejandro Calderón MateosFélix García-Carballeira,

Program execution time

ARCOS @ UC3M33

 IN is the number of instructions of the program

 CPI is the average number of clock cycles
to execute an instruction

 tcycle_CPI is the cycle clock duration

 AMI is the average number of memory access
per instruction

 tcycle_mem is the time needed for a memory access

Timeexecution = IN × CPI × tcycle_CPU + IN × AMI × tcycle_mem

Alejandro Calderón MateosFélix García-Carballeira,

Factors affecting execution time

ARCOS @ UC3M34

IN CPI tcycle_CPI AMI tcycle_mem

Program

Compiler

Instruction set

Organization

Technology

Alejandro Calderón MateosFélix García-Carballeira,

Model of processor based on datapath

(without internal bus)

ARCOS @ UC3M35

Instructions

memory

PC

+4

Register file
Data

memory

Alejandro Calderón MateosFélix García-Carballeira,

Instruction level parallelism

ARCOS @ UC3M36

 Concurrent execution of several machine instructions

 Combination of elements working in parallel:

 Pipelined processor: use pipelines in which multiple

instructions are overlapped in execution

 Superscalar processor: multiple independent instruction

pipelines are used. Each pipeline can handle multiple

instructions at a time

 Multicore processor: several processors or cores in the

same chip

Alejandro Calderón MateosFélix García-Carballeira,

Segmentation of instructions

ARCOS @ UC3M37

 Stages in the execution of instructions:

 IF: Instruction fetch

 D: Decoding

 RO: Read operands

 EX: Execution

 WO: Write operands

Alejandro Calderón MateosFélix García-Carballeira,

Segmentation of instructions
without pipeline

ARCOS @ UC3M38

 Stages in the execution of instructions:

 IF: Instruction fetch

 D: Decoding

 RO: Read operands

 EX: Execution

 WO: Write operands

IF D RO EX WO

Time

IF D RO EX WO

Alejandro Calderón MateosFélix García-Carballeira,

Segmentation of instructions
without pipeline

ARCOS @ UC3M39

 If each phase takes N clock cycles, then:

 One instruction takes 5*N clock cycles to be executed

 1/5 of instruction is issued every N clock cycles

IF D RO EX WO

Time

IF D RO EX WO

Alejandro Calderón MateosFélix García-Carballeira,

Segmentation of instructions
with pipeline

ARCOS @ UC3M40

 If each phase takes N clock cycles, then:

 One instruction takes 5*N clock cycles to be executed

 One instruction is issued every N clock cycles

IF D RO EX WO

Time

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

Alejandro Calderón MateosFélix García-Carballeira,

Superscalar

ARCOS @ UC3M41

 Pipeline with several functional units in parallel

IF D RO EX WO

Time

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

IF D RO EX WO

Alejandro Calderón MateosFélix García-Carballeira,

Multicore

ARCOS @ UC3M42

 Multiples processors in the same chip

Alejandro Calderón MateosFélix García-Carballeira,

Multicore

ARCOS @ UC3M43

 Multiples processors in the same chip

http://wccftech.com/intel-knights-landing-detailed-16-gb-highbandwidth-ondie-memory-384-gb-ddr4-system-memory-support-8-billion-transistors/

http://wccftech.com/intel-knights-landing-detailed-16-gb-highbandwidth-ondie-memory-384-gb-ddr4-system-memory-support-8-billion-transistors/

Lesson 4 (III)

The processor

Computer Structure

Bachelor in Computer Science and Engineering

ARCOS Group

