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Introduction

ARCOS @ UC3M4

Memory

Bus

I/OI/OI/O
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Introduction: bus

ARCOS @ UC3M5

Memory

Bus

I/OI/OI/O

CPU

 What an interconnection bus is
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Introduction: I/O

ARCOS @ UC3M6

Memory

Bus

I/OI/OI/O

CPU

 What a peripheral is

 What an input/output module is

 How data is accessed from peripherals
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Bus

ARCOS @ UC3M8

 A bus is a communication path

between two or more devices.

 It consists of several bit

transmission lines.

 Shared medium, univocal.

 Allows to transmit several bits 

between two elements 

connected to it

E1 E2 E3
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System bus

ARCOS @ UC3M9

 System bus

 Connects the main 

components of the 

computer

 It represents the union of 

three buses: 

 Control

 Addresses 

 Data

CPU Memory I/O
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Buses

ARCOS @ UC3M10

 Data bus

 Transmits data

 Its width and speed have a 

great influence on the 

performance

 Address bus

 Memory addresses and I/O devices

 Its width determines the maximum 

memory capacity

 Control bus

 Control and timing signals

CPU Memory I/O
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Characteristics of a bus

ARCOS @ UC3M11

 Bus width: determines the 

number of bits that can be 

transmitted simultaneously

 Frequency: clock frequency with which it can operate

 Transfer rate: number of bytes per clock cycle

 Bandwidth (transfer rate): transmitted bytes per second

 Transfer rate X frequency

Serial bus

Parallel bus
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Exercise

ARCOS @ UC3M12

 Calculate the bandwidth in MBps of a 32-bit bus with a 

frequency of 66 MHz



Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M13

 Calculate the bandwidth in MBps of a 32-bit bus with a 

frequency of 66 MHz

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
32 𝑏𝑖𝑡𝑠 × 66 𝑀𝐻𝑧

8 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒
=

32 × 66 ∙106

8
= 264 MBps
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Arbitration method (bus protocol)

ARCOS @ UC3M14

 Determines which of the elements connected to the bus 
can access the bus

 Centralized scheme: a bus controller grants the use of the 
bus

 When an element wants to access the bus, it requests 
permission from the controller through the control lines 
(BUSRQ)

 When the bus is free the controller grants the use 
(BUSACK)

 Distributed scheme: each element connected to the bus 
includes an access control logic that allows the joint use of 
the bus (access protocol)
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Synchronous and asynchronous buses

ARCOS @ UC3M15

 A synchronous bus is governed by a clock signal and a 

communication protocol set to the operation of the 

clock

 Fast

 All devices connected to it must operate at the same clock 

frequency

 An asynchronous bus does not use a clock, the 

communication is done by sending orders through the 

control lines of the bus
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Bus hierarchies

ARCOS @ UC3M16

 Problem:

 The more devices connected to the bus, 

the longer the propagation delay.

 As the number of transfer requests increases, 

a bottleneck can occur. 

 Solutions:

 Increase data transmission speed with wider buses.

 Use more data buses, organized hierarchically.
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Bus hierarchies
Bus diagram in a typical computer system

ARCOS @ UC3M17

Processor

Main

Mamory

Cache

Local bus

Local I/O 

controller

SCSI Modem

SerieInterface with

the expansion

bus

Net

Expansion bus

System Bus
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Disks Controllers

ARCOS @ UC3M18

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier

~1980 … ~2010 ~2010 … now

Normal 

PC

High-end

PC
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Curiosity:
USB family

ARCOS @ UC3M19

Transfer  (per sec.) Introduction

USB4 40 Gbps 2019

USB 3.2 20 Gbps 2017

USB 3.0 600 MB/s 2010

USB 2.0 60 MB/s 2000

USB 1.0 1.5 MB/s and 187 KB/s 1996

http://www.unp.co.in/f140/comparison-of-usb-3-0-port-with-usb-2-0-and-usb-1-0-a-70063/
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Peripheral concept

21

 Peripheral:

 Any external device that 

connects to a processor 

through the input/output (I/O) 

modules.

 They allow 

storing information or 

communicating the computer 

with the outside world.

ARCOS @ UC3M

Peripherals
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Classification of peripherals (by use)

ARCOS @ UC3M22

 Communication: 

 Human-computer
 (Terminal) keyboard, mouse, …

 (Printer) plotter, scanner, …

 Computer-computer
 Modem, network adapter

 Physical environment
 (read/action) x 

(analogical/digital)

 Storing: 
 Direct access (disks, DVD, …)

 Sequential access (tapes)

https://sites.google.com/site/ordenylimpiezapa/planeamiento-del-buen-orden-y-la-limpieza/dispositivos-de-almacenamiento



Félix García Carballeira, Alejandro Calderón Mateos

General structure of a peripheral

ARCOS @ UC3M23

 Consisting of: 

 Device

 Hardware that interacts with the 

environment

 I/O module

 Also called controller or I/O unit

 Interface between the device and 

the processor, which hides the 

particularities of the processor.

Device

I/O 

module

Peripherals
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Example: 
Disk drive

ARCOS @ UC3M24

Device

I/O 

module

Peripherals
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I/O module

ARCOS @ UC3M25

 I/O modules perform the connection among the peripheral devices and 
the processor (or the memory)

Device

I/O
module

Memory

…

Bus
Processor

Peripherals
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I/O module: why there are necessary?

ARCOS @ UC3M26

 Wide variety of peripherals.

 Peripherals are 'peculiar’.

 Data transfer rate of peripherals is much slower than memory or CPU ones.

 Peripherals are 'very slow'.

 Formats and word sizes of peripherals different from those of the computer to 

which they are connected.

Device

I/O
module

Memory

…

Bus
Processor

Peripherals
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I/O module: range of possible tasks

ARCOS @ UC3M27

 I/O module common tasks:

 Control and timing

 Error detection

 Processor/device communication

 Data buffering

 Etc.

 I/O module types by complexity:

 I/O controller or device driver: 
simpler module, which requires the CPU 
to have detailed control of the device.

 Channel I/O or I/O processor: 
handles most of the processing details.

https://embeddist.wordpress.com/2015/06/02/network-performance-of-soc-with-tcpip-offload-engine-w7500-3/

I/O processorI/O controller
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I/O module: main functions

ARCOS @ UC3M28

 Attending to the CPU:
 Order decoding

 Status information

 Control and timing 

 E.g.: data to M.M.

 Control peripheral(s):
 Communication with peripherals

 Error detection

 Temporary data storage

 peripheral->processor

Control

State

Data

0x0501
0x0502
0x0503

I/O module

I/O logic

External 

device logic

External 

device logic
…

data

state

controldata

state

control
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Simplified 

I/O module model

ARCOS @ UC3M29

Control reg.

State reg.

Data reg.

0x0501
0x0502
0x0503

I/O module

I/O logic

External 

device 

logic

External 

device 

logic

…

data

state

controldata

state

control

Data busAddress bus

(corresponding lines)

Control bus
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Simplified I/O module model

ARCOS @ UC3M30

 Interaction between processor 
and I/O module through 3 
registers:

 The control register
 Commands for the peripheral

 The state register
 Status of the last command

 The data register
 Data exchanged processor/peripheral

Control

State

Data

0x0501
0x0502
0x0503

I/O module

I/O logic

External 

device logic

External 

device logic
…

data

state

controldata

state

control
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Simplified I/O module model

ARCOS @ UC3M31

 Interaction between peripheral and I/O module:

 Data signals (lines): 
for transferring information

 State signals (lines): 
information about the device

 Examples:
– New data available
– Peripheral on/off
– Peripheral busy
– Peripheral up and running
– Error in last command
– …

 Control signals (lines):
to control the peripheral/device

 Examples:
– Power on/off
– Skip page in a printer
– Seek in a hard disk
– …

Control

State

Data

0x0501
0x0502
0x0503

I/O module

I/O logic

External 

device logic

External 

device logic
…

data

state

controldata

state

control
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I/O module: main characteristics

ARCOS @ UC3M32

 Transfer unit
 Block

 Character

 Addressing 
 Memory-mapped I/O

 Port-mapped I/O

 I/O techniques
 Programmed I/O

 Interrupt I/O

 DMA

Control

State

Data

0x0501
0x0502
0x0503

I/O module

…
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Characteristics (1/3):
Transfer unit

ARCOS @ UC3M33

 Block devices:

 Unit: block of bytes

 Access: sequential or random

 Operations: read, write, seek, …

 Examples:  “tapes” and disks

 Character devices:

 Unit: chars (ASCII, Unicode, etc.)

 Access: sequential to characters

 Operations :  get,  put, ….

 Example: terminals, printers, etc.
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Characteristics (2/3):
I/O addressing

ARCOS @ UC3M34

 Memory-mapped I/O (MMIO)

 I/O registers are mapped in memory using a set of 
memory addresses for these registers. 

 Same machine instructions for memory and I/O:
 lw $a0,  label2_disk1

 Load in the processor register “$a0” the value stored in the I/O 
register identified by a given address “label2_disk1”

 sw $a0, label_disk2
 To write an item in an I/O register from the I/O module

 Port-mapped I/O (PMIO):

 I/O address space is isolated from memory address 
space.

 Special privileged machine instructions (~ to lw/sw):
 IN  $a0,  label2_disk1

 Load in the processor register “$a0” the value stored in the I/O 
register identified by a given address “label2_disk1”

 OUT $a0, label_disk2
 To write an item in an I/O register from the I/O module

Mem.

I/O

Mem.

I/O

in    Reg., add.

out Reg., add.

lw Reg., add.

sw Reg., add.

lw Reg., add.

sw Reg., add.
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ARCOS @ UC3M35

Linux Windows
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Characteristics (3/3):
I/O techniques

ARCOS @ UC3M36

 I/O techniques: 
Processor and I/O_module interaction

 Programmed I/O

 Interrupt I/O

 DMA(Direct Memory Access) I/O
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A little bit of history...

ARCOS @ UC3M38

 First hard disk introduced in 1956

 It was called IBM RAMAC 305

 50 aluminum disks of 61 cm (24") diameter

 5 MB of data

 Spun at 3,600 revolutions per minute (RPM)

 Had a transfer speed of 8.8 Kbps

 35 000$ per year rental

 Weighed about one ton

1956 1980 1999

https://www.pingdom.com/blog/amazing-facts-and-figures-about-the-evolution-of-hard-disk-drives/
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A little bit of history...

ARCOS @ UC3M39

 IBM RAMAC 305 (1956)

 50 aluminum disks 

of 61 cm (24") diameter

 5 MB of data

 3,600 RPM

 transfer speed: 8.8 Kbps

 35 000$ per year rental

1956 1980 1999

http://www.ed-thelen.org/RAMAC/
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A little bit of history...

ARCOS @ UC3M40

 In 1980 appeared the first 5 ¼” disk

 5 MB

 ~4 500 $

1956 1980 1999

https://sudonull.com/post/121653-The-history-of-drives-in-advertising-Part-1-1956-1991
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A little bit of history...

ARCOS @ UC3M41

 In 1997 appeared the first disk with 15 000 RPM

 In 1999 is introduced the Microdrive

 IBM+Hitachi,  170 MiB

 The 2005 microdrive reach 6 GiB

1956 1980 1999
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Evolution…

ARCOS @ UC3M42 http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.svg 
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Evolution…

ARCOS @ UC3M43

https://www.pingdom.com/blog/amazing-facts-and-figures-about-the-evolution-of-hard-disk-drives/

Annual growth rate

Capacity 1.93 / year

Cost 0.60 / year

Performance 0.05 / year
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Anatomy of a hard disk drive

ARCOS @ UC3M44

Engine

www.snia.org
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Anatomy of a hard disk drive

ARCOS @ UC3M45

Disks 
(plates)

www.snia.org
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Anatomy of a hard disk drive

ARCOS @ UC3M46

Read/write

heads

www.snia.org

https://faculty.etsu.edu/TARNOFF/ntes2150/mem_hier/mem_hier.html
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Anatomy of a hard disk drive

ARCOS @ UC3M47

control and 

mechanic module

www.snia.org
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Anatomy of a hard disk drive

ARCOS @ UC3M48

 Disk controller

 Command scheduling

 Error correction

 Optimization

 Integrity check

 Revolutions per minute 
(RPM) monitoring

 Disk cache

www.snia.org
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Multiple plates

ARCOS @ UC3M49

Rotation

http://www.snia.org
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Cylinders

ARCOS @ UC3M50

 Cylinder:
information accessed by 
all heads in a rotation
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Tracks, sectors and blocks

ARCOS @ UC3M51

 Track:

 Concentric ring in plate

 Sector:

 Disk area division performed 

on formatting (typically 512 

bytes)

 Block:

 File System writes in blocks

 Sector groups

Source: Stallings, William, Computer Organization & Architecture, 6e, Prentice Hall, Upper Saddle River, NJ, Figure 6.2, p. 166.
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Distribution of sectors

ARCOS @ UC3M52

Stallings, William, Computer Organization & Architecture, 6e, Prentice Hall, Upper Saddle River, NJ, Figure 6.3, p. 167.
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Evolution of disk sizes

ARCOS @ UC3M53

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier
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Capacity

ARCOS @ UC3M54

 Bits per inch

 They depend on the read/write head, the recording medium, 

the rotation of the disk and the speed at which the bus can 

accept data.

 Tracks per inch

 They depend on the read/write head, the recording medium, 

the precision with which the head can be positioned and the 

ability of the disk to rotate in a perfect circle.
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Storage capacity

ARCOS @ UC3M55

 For constant angular velocity disks:

 ns: number of surfaces

 p: tracks per surfaces

 s: sectors per track

 ts: bytes per sector

 For multiple zone recording:

 z: number of zones

 pi: number of track per zone i

 si: sectors per track in zone i

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑛𝑠 × 𝑝 × 𝑠 × 𝑡𝑠

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑛𝑠 × 𝑡𝑠 ×෍

𝑖=1

𝑧

(𝑝𝑖 × 𝑠𝑖)
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Exercise

ARCOS @ UC3M56

 How many bytes does a disk drive of 250 GB store?
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Remainder

ARCOS @ UC3M57

 1 KB = 1024 bytes, but in the I.S. is 1000 bytes

 Manufactures of disk drives and telecommunications use I.S.:

 A disk drive of 30 GB stores 30 x 109 bytes

 A network of 1 Mbit/s transfers 106 bps.

Name Abr Factor I.S.

Kilo K 210 = 1,024 103   = 1,000

Mega M 220 = 1,048,576 106   = 1,000,000

Giga G 230 = 1,073,741,824 109 = 1,000,000,000

Tera T 240 = 1,099,511,627,776 1012 = 1,000,000,000,000

Peta P 250 = 1,125,899,906,842,624 1015 = 1,000,000,000,000,000

Exa E 260 = 1,152,921,504,606,846,976 1018 = 1,000,000,000,000,000,000

Zetta Z 270 = 1,180,591,620,717,411,303,424 1021 = 1,000,000,000,000,000,000,000

Yotta Y 280 = 1,208,925,819,614,629,174,706,176 1024 = 1,000,000,000,000,000,000,000,000
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Recording techniques

ARCOS @ UC3M58

 Over the last decade the magnetic recording has achieved 100% growth of 

Areal Density (AD)

 Each bit cell in a track is composed of multiple magnetic grains

 The size or the number of magnetic grains in a bit cell cannot be scaled 

much below a diameter of ten nanometers due to:

 Superparamagnetic effect

 Ambient temperature would become magnetic grains unstable

 Recording techniques:

 Longitudinal recording: 

store data in a longitudinal way over a horizontal plane

 Perpendicular recording: 

data are stored in vertical way, increasing the disk capacity



Félix García Carballeira, Alejandro Calderón Mateos

Read/write head

ARCOS @ UC3M59

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier
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Areal density

ARCOS @ UC3M60

 Improvements in disk capacity are expressed as an improvement in 
areal density (number of bits that can be recorded per square inch):

 Until 1998 the annual increase rate was 29%

 1998-1997 the annual increase rate was  60%

 1997-2003 the annual increase rate was  100%

 2003-2011 the annual increase rate was  30%

 In 2011 the bigger areal density in commercial products was 400 
billions of bits per square inch

 The cost per bit has improved in a factor of 1.000.000 between 
1983 and 2011

( ) trackaon
Inch

Bits
surfacediskaon

Inch

Tracks
ADdensityAreal =
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Evolution of areal density

ARCOS @ UC3M61

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier
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Disks and main memory

ARCOS @ UC3M62

 The latency of a DRAM memory is 100.000 less than the 

latency of a disk

 The cost per GB in a DRAM memory is 30-150 times the 

cost per GB of a disk

 In 2015:

 An 8 TB disk transfers 190 MB/s at a cost of 250 $.

 An 8 GB DDR4 module transfers 25 GB/s and costs approx. 

70$.
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Disks and main memory

ARCOS @ UC3M63

Patterson & Hennesy
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Addressing 

ARCOS @ UC3M64

 Types of addressing:

 Physical addressing: cylinder-track-sector. A sector is 

determined by these three values.

 Logical blocks addressing (LBN)

 Each sector has a logical number and the mapping is done 

by the disk

 Current disk controllers do the mapping between LBN 

and physical addresses
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Access time

ARCOS @ UC3M65

 Taccess =  Tseek + Tlatency + Ttransfer

 Seek time (Tseek): time to move the head from the current 

cylinder to the target cylinder 

 Rotational latency (Tlatency): time waiting for the rotation of the 

disk to bring the required sector under the read-write head

 Tlatency = Half turn/lap time of a track

 Data transfer time (Ttransfer): time required to traverse a sector 

and transfer the data from it.

 Ttransfer = Amount of data / data transfer rate
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Seek and rotation

ARCOS @ UC3M66

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier
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Seek time, rotational latency and…

ARCOS @ UC3M67

 Seek time

 When the areal density increase the capacity of cylinders 
increase too:
 The probability of reducing the number of seeks is increased
 Increase the probability that the next data to request are in the same 

cylinder, reducing in this way the number of seeks

 Rotational latency

 Rotational latency is generally calculated as half the time it 
takes the disk to do one revolution:

 Zero-latency access
 Transfer the data as soon as the head is on the desired track to a 

buffer where the blocks are then reordered.

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 =
1

2
×
60 × 103

𝑅𝑃𝑀
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… and data transfer time

ARCOS @ UC3M68

 Data transfer time can be calculated as:

 Where Ntrack denotes the number of sectors on a track, and  

Nrequest the data length of a request measured in sectors.

 The ratio of the sectors of the outmost zone to that of the 

innermost zone ranges from 1.43 to 1.58.

 Two elements:

 External data rate to measure the transfer rate between memory and disk cache

 Transfer rate between disk cache and disk storage media

𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =
𝑁𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝑁𝑡𝑟𝑎𝑐𝑘
×

60

𝑅𝑃𝑀
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Rotational latency and rotational speed 

ARCOS @ UC3M69

Rotational Speed

(RPM)

Rotational Latency

(ms)

5400 5.6

7200 4.2

10000 3.0

12000 2.5

15000 2.0
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Evolution rotational latency and RPM

ARCOS @ UC3M70

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier

Memory Systems

Cache, DRAM, Disk

Bruce Jacob, Spencer Ng, David Wang

Elsevier

RPM Rotational latency
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Effect of the request size

ARCOS @ UC3M71

 Effect of the request size (ta=6 ms y TH = 60MB/s)
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Exercise

ARCOS @ UC3M72

 Consider a disk with:

 Rotational speed: 7200 rpm

 Disk platters: 5, with 2 surfaces per plate

 Number of tracks per plate: 30000

 Sectors per plate: 600

 Seek time: 1 ms per each 100 tracks

 If the disk head is in track 0 and the data requested are 
stored in track 600. Compute:

 Capacity of the disk

 Rotational latency

 Transfer time needed to transfer a sector

 Access time for a sector in track 600 (seek time)
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Exercise (solution)

ARCOS @ UC3M73

 Capacity:
 5 plates * 2 sides/plates * 30.000 tracks/side * 

600 sector/track * 512 bytes/sector = 85,8 GB

 Rotational latency:
 Lr = Half turn/lap time of a track 

 7.200 rotation/minute -> 120 rotation/second 
-> 0,0083 seconds/rotation -> 4.2 milliseconds (half rotation)

 Sector transfer time:
 600 sectors per track and 1 track is read in 8,3 milliseconds

 8,3 / 600 -> 0.014 milliseconds

 Seek time:
 Every 100 tracks 1 ms, and it has to seek to the track 600

 600 / 100 = 6 milliseconds
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Disk controller

ARCOS @ UC3M74

 Circuits and components to control the disk:

 Storage interface

 Disk sequencer

 Error correction code(ECC)

 Servo motor

 Microprocessor

 Buffer controller

 Disk cache
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Disk cache

ARCOS @ UC3M75

 Exploit the locality

 Usually does not exhibit temporal locality due to operating 

system data caches.

 Typically implements read-ahead (prefetch) to improve 

spatial locality

 Reduce physical access to disk

 Reduce the heat dissipation

 Increase the performance
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Disk cache

ARCOS @ UC3M76

 Systems designers generally believe that the size of a 

cache should be at least 0.1 to 0.3 % of the disk.

 Disk caches are typically divided into independent 

segments corresponding to sequential data streams

 Replacement algorithms

 Random Replacement

 Least Frequently Used (LFU)

 Least Recently Used (LRU)



Félix García Carballeira, Alejandro Calderón Mateos

Disk scheduler

ARCOS @ UC3M77

 Disk drives maintain a queue with pending requests 

 Disk schedulers are designed to minimize the access time by 

reordering or rearranging pending request in the queue to 

reduce the seek time and rotational latency 

 E.g.: block requested: 1, 9, 2, 10 => in queue: 1, 2, 9, 10

 Scheduling algorithms:

 First Come First Served (FCFS)

 Shortest Seek Time First (SSTF)

 SCAN

 C-SCAN

 LOOK
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Other elements

ARCOS @ UC3M78

 Disk sequencer: manages the data transfer between 

storage interface and data buffer

 ECC: responsible for adding ECC codes to the user data 

and also checking and correcting errors

 Servo control: detects the current position of the disk 

head and controls track following and seeking

 Microprocessor: controls the general disk behavior

 Buffer controller: provides arbitration and raw signal 

control of the buffer memory
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Exercise

ARCOS @ UC3M79

 A disk drive has a rotational speed of 7200 rpm and a 

constant areal density of 604 sectors per track.  

The average access time in 4 ms

 Compute the access time to a sector
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Exercise

ARCOS @ UC3M80

 Be a hard disk with an average seek time of 4 ms, 

a rotation speed of 15 000 rpm and 512-byte sectors with 

500 sectors per track.  We need to read a file consisting 

of 2 500 sectors with a total of 1.22 MB. 

Estimate the time necessary to read this file in two 

scenarios:

 The file is stored sequentially, i.e. the file occupies the 

sectors of 5 adjacent tracks.

 The sectors of the file are randomly distributed on the disk.
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Reliability

ARCOS @ UC3M81

 MTTF:  mean time to failure

 MTTR: mean time to repair

 Availability is defined as:

 What does a reliability of 99% mean?

 In 365 consecutive days device works 99*365/100 = 361.3 days

 It is out of service 3.65 days

 Failures in disk drives produce the 20-55% of the failures in the 
storage systems.

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅
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Energy consumption

ARCOS @ UC3M82

 The energy consumption in a typical ATA disk drive of 2011 is:
 9 w when is idle

 11 w when is reading or writing

 13 w in a seek operation

 Power consumed by a disk:

 Where Nplatter is the number of disk patters y Dplatter the diameter for 

the platters

 Temperature is often the most important factor which affects the 

reliability of disk drives

 Every 10 increase over 21 decreases the reliability by 50%

8.26.4 RPMDNPower platterplatter =
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Power state transition of disk drives

ARCOS @ UC3M83

Active Idle Standby

R/W requests

(1)

(2)

(3)

(4)



Félix García Carballeira, Alejandro Calderón Mateos

Power state transitions

ARCOS @ UC3M84

1. There is no pending request.

 the disk drive is transferred to the idle state (where)

 the disk platters are still spinning but the electronics may 
be partially unpowered

2. Disk drive receives a request. 

3. To conserve energy

 the disk drive is transferred to the standby state (where)

 the disk stops spinning, and the head is moved off the disk

4. To perform requests after entering the standby state, 
the disk drive must be transferred back from the 
standby state to the active state by spinning up
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Energy conservation methods

ARCOS @ UC3M85

 Based on timeout strategies. Once a disk drive is idle for 

a specific period of time, the disk drive is spun down to 

save energy

 Dynamic prediction. Based on the behaviors of application

 Stochastic mechanisms. 

 Application-aware power management

 Applications inform over the access pattern (in the source 

code or with complier-driven methods)
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Impacts of power state transitions
problems spinning down disks

ARCOS @ UC3M86

 Increased consumption,

when the platens have to rotate again.

 Reduces the reliability of the discs.

Manufacturers usually indicate the number of start/stop 

cycles a disk can withstand.  Above this value the 

probability of failure increases by 50%.

 Power saving methods are usually applied to portable 

devices and are not applied to servers because of the 

intensive data loads.
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Contents

ARCOS @ UC3M87
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2. Buses

 Structure and operation

 Bus hierarchy

3. Peripheral

 Concept and types of peripherals

 General structure of a peripheral

 I/O modules

4. Case study: hard disk drive and solid-state drives 

5. I/O interaction: I/O techniques
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Solid State Drive (SSD)

ARCOS @ UC3M88

 Semiconductor-based block storage device that acts as a 

disk drive

 Based on Flash memories

 Non-volatile storage

 Based on DDR memories

 Requires batteries and disk backup for non-volatile storage

SDD

Without moving parts

HDD

with moving parts
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SDD vs HDD

ARCOS @ UC3M89

SDD HDD

Access time 0.1 ms 5-8 ms

I/O operations/sec 6000 io/s 400 io/s

consumption 2-5 watts 6-15 watts
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SDD vs HDD: energy consumption

ARCOS @ UC3M90
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Flash Memories

ARCOS @ UC3M91

 Non-volatile memories that can be deleted and recorded 
electrically.

 Types:

NOR Flash NAND Flash

 Based on NOR gates

 Allows byte level access

 Good for 

high-speed random access

 Used in BIOS memory 

(boot function)

 Faster reading operations

 Based on NAND gates

 Cannot access individual bytes

 Good for reads/ writes at high speed 

in sequential mode at block level

 Used in SSD

 Higher density and cheaper. 

 More durable, less expensive, 

denser, faster write/erase operations
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Memory cells: structure

ARCOS @ UC3M92

 Each storage cell consists of a 

floating gate MOS transistor

 There are two gates insulated 

by a layer of rust

 Control gate

 Floating gate

 The electrons flow freely 

between the two gates

 The floating gate is electrically 

insulated, trapping the electrons

Fundamenros de Sistemas Digitales

Thomas L. Floyd
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Memory cells: charge

ARCOS @ UC3M93

 The data bit is stored as a charge or no charge in the 

floating gate, depending on whether you want to store 

a 0 or a 1.

Fundamenros de Sistemas Digitales

Thomas L. Floyd
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Basic operations of a flash memory cell

ARCOS @ UC3M94

 Programming

 Initially all cells are in state 1, 

because the charge is removed

 Read operation

 Delete operation
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Programming a flash memory cell

ARCOS @ UC3M95

 In the writing process, electrons are added to those gates that 

should store a 0 and not added to those that should store a 1:

 To store a 1, no charge is added, 

leaving the cell in the deleted state

Fundamenros de Sistemas Digitales

Thomas L. Floyd

 To store a 0, a sufficiently positive 

voltage is applied to the control gate 

with respect to the source, to add 

charge to the floating gate during 

programming (attracts electrons)

 Only "0" is written
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Reading a flash memory cell

ARCOS @ UC3M96

 During the read operation, 

a positive voltage is applied to the control gate:

Fundamenros de Sistemas Digitales

Thomas L. Floyd

 Read 1 Read 0
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Delete

ARCOS @ UC3M97

 During the delete operation, 

the charge is removed from all memory cells.  A voltage is 

applied in the opposite direction to remove the electrons.

Fundamenros de Sistemas Digitales

Thomas L. Floyd
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NAND Flash memory types

ARCOS @ UC3M98

 Single-level cell flash (SLC)

 Store 1 bit per cell

 50000 – 100 000 writings per cell

 Used primarily in military and industrial applications

 Multi-level cell flash (MLC)

 Store several bits per cell, depending on the number of 

electrons stored in the cell

 < 10 000 writings per cell (they wear more)

 Used in consumer electronics

 Good: more capacity and lower cost

 Bad: less duration and half the performance of SLCs
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Wear leveling

ARCOS @ UC3M99

 Problem:

 A NAND flash memory can only write a certain number of 
times in each block (or cell)

 When the limit is exceeded, the cell wears out (its oxide 
layer) and no longer stores electrons properly

 Solution:  Wear Leveling 

 A process used by an SSD controller to maximize the life of 
the flash memory

 This technique levels out the wear and tear on all blocks by 
distributing the data writing across all blocks

 When a block is to be modified, it is written in a new one
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Structure of a Nand Flash

ARCOS @ UC3M100

 NAND flashes are divided into planes, blocks and pages:

 Pages

 Small unit to program.

 E.g.: 2 KB pages

 Block

 Several pages.

 Small unit to be delete/erased.

 E.g.: 128 KB blocks

 Planes

 Several blocks.

 Can read and write simultaneously.

 Die

 Several planes in the same chip
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ARCOS @ UC3M101

1. Introduction
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 Structure and operation

 Bus hierarchy
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 Concept and types of peripherals

 General structure of a peripheral

 I/O modules

4. Case study: hard disk drive and solid-state drives 

5. I/O interaction: I/O techniques
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I/O module: main characteristics

ARCOS @ UC3M102

 Transfer unit
 Block

 Character

 Addressing 
 Memory-mapped I/O

 Port-mapped I/O

 I/O techniques
 Programmed I/O

 Interrupt I/O

 DMA

Control

State

Data

0x0501
0x0502
0x0503

I/
O

 m
o
d
u
le

…

P
e
ri

p
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e
ra
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bus

Address 

bus
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bus
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Characteristics (1/3):
Transfer unit

ARCOS @ UC3M103

 Block devices:

 Unit: block of bytes

 Access: sequential or random

 Operations: read, write, seek, …

 Examples:  “tapes” and disks

 Character devices:

 Unit: chars (ASCII, Unicode, etc.)

 Access: sequential to characters

 Operations :  get,  put, ….

 Example: terminals, printers, etc.
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Characteristics (2/3):
I/O addressing

ARCOS @ UC3M104

 Memory-mapped I/O (MMIO)

 I/O registers are mapped in memory using a set of 
memory addresses for these registers. 

 Same machine instructions for memory and I/O:
 lw $a0,  label2_disk1

 Load in the processor register “$a0” the value stored in the I/O 
register identified by a given address “label2_disk1”

 sw $a0, label_disk2
 To write an item in an I/O register of the I/O module

 Port-mapped I/O (PMIO):

 I/O address space is isolated from memory address 
space.

 Special privileged machine instructions (~ to lw/sw):
 IN  $a0,  label2_disk1

 Load in the processor register “$a0” the value stored in the I/O 
register identified by a given address “label2_disk1”

 OUT $a0, label_disk2
 To write an item in an I/O register of the I/O module

Mem.

I/O

Mem.

I/O

in    Reg., add.

out Reg., add.

lw Reg., add.

sw Reg., add.

lw Reg., add.

sw Reg., add.
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Characteristics (3/3)
I/O techniques: interaction CPU - I/O module

ARCOS @ UC3M105

 Programmed I/O

 CPU does all I/O:        busy wait → transfer

 Interrupt I/O

 CPU does not wait, only transfer data

 DMA (Direct Memory Access) I/O

 CPU neither wait, nor transfer, it is notified at the end

‘polling’
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Characteristics (3/3)
I/O techniques: interaction CPU - I/O module

ARCOS @ UC3M106

 Programmed I/O

 Interrupt I/O

 DMA I/O
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Programmed I/O

ARCOS @ UC3M107

Memory

Bus

I/OI/OI/O

Processor
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Programmed I/O
example of interaction for single request

ARCOS @ UC3M108

Proc.           I/O

I/O           Proc.

Request

operation

Read state

Ready?

Send data

No

Si

I/O            Proc. 
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Programmed I/O
example of interaction for single request

ARCOS @ UC3M109

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses
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Programmed I/O
example of interaction for single request

ARCOS @ UC3M110

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses
 How to read a data (word)?

# 1. Send read command

li $t0, 0

sw $t0, 0x0500

# 2. Read state

bucle: lw $t0, 0x0504

# 3. Check state

beqz $t0, bucle

# 4. Read data (word)

lw $t0, 0x0508
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Programmed I/O
example of interaction for single request

ARCOS @ UC3M111

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions

I/O module

State reg.

Data reg.

Control reg.

0x0504

Addresses
 How to write a data (word)?

# 1. Send the data

li $t0, 123

sw $t0, 0x0508

# 2. Send write command

li $t0, 1

sw $t0, 0x0500

# 3. Read state

bucle: lw $t0, 0x0504

# 4. Check state

beqz $t0, bucle

0x0508

0x0500
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Reading a data block

ARCOS @ UC3M112

Operation 

request

Read status

Ready?

Read word

No

Yes

Proc.            I/O

I/O           Proc.

I/O            Proc. 

Write data in 

main memory
Proc.            Memory

End of 

block?

Yes

No
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Exercise

ARCOS @ UC3M113

Code an assembler program 

that reads 100 integers using 

the described I/O module, 

and stores them in the main 

memory at address given by 

the 'data1’ label.

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions
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Exercise (solution)

ARCOS @ UC3M114

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions

.data

data1:  .space 400

.text

.globl main

main:          li $t3 0

loop1:    li $t0 0

sw $t0 0x500

loop2:    lw $t1 0x504

beqz $t1 loop2

lw $t2 0x508

sw $t2 data1($t3)

add $t3 $t3 4

bne $t3 400 loop1

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses
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Exercise (solution)

ARCOS @ UC3M115

.data

data1:  .space 400

.text

.globl main

main:          li $t3 0

loop1:    li $t0 0

sw $t0 0x500

loop2:    lw $t1 0x504

beqz $t1 loop2

lw $t2 0x508

sw $t2 data1($t3)

add $t3 $t3 4

bne $t3 400 loop1

Synchronization

loop

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions
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Exercise (solution)

ARCOS @ UC3M116

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw and sw MIPS instructions

.data

data1:  .space 400

.text

.globl main

main:          li $t3 0

loop1:    li $t0 0

sw $t0 0x500

loop2:    lw $t1 0x504

beqz $t1 loop2

lw $t2 0x508

sw $t2 data1($t3)

add $t3 $t3 4

bne $t3 400 loop1

Synchronization

loop
Transfer 

loop

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses
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Exercise 

ARCOS @ UC3M117

 Be a computer with the capacity 

to execute 200 million 

instructions per second (200 

MIPS).

 The I/O module described 

above is connected with an 

average read timeout of 5 ms.

 Calculate how many 

instructions are executed in the 

synchronization loop and in the 

transfer loop for the program 

shown.

.data

data1:  .space 400

.text

.globl main

main:          li $t3 0

loop1:    li $t0 0

sw $t0 0x500

loop2:    lw $t1 0x504

beqz $t1 loop2

lw $t2 0x508

sw $t2 data1($t3)

add $t3 $t3 4

bne $t3 400 loop1

Synchronization

loop
Transfer 

loop
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Exercise (solution)

ARCOS @ UC3M118

 Bucle de sincronización:

 In average 5 ms

 200 MIPS are executed

 Isl = 200*106 * 5*10-3 = 106

 Bucle de transferencia:

 1 (li $t3 0) + 6 * 100 + 106 (Isl)

 1,000,601 instructions are executed, 

and 1,000,000 are instructions 

executed in the synchronization loop 

(el 99,9%)

 It is a waste of processor cycles

 The CPU does not perform useful work

.data

data1:  .space 400

.text

.globl main

main:          li $t3 0

loop1:    li $t0 0

sw $t0 0x500

loop2:    lw $t1 0x504

beqz $t1 loop2

lw $t2 0x508

sw $t2 data1($t3)

add $t3 $t3 4

bne $t3 400 loop1

Synchronization

loop
Transfer 

loop
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Main problem of the programmed I/O

ARCOS @ UC3M119

Error?

No

Yes

CPU usage

CPU usage

Operation

request

Read state

Ready?

Data transfer

No

Yes

Synchronization loop

The processor does not perform useful work
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Interrupt driven I/O

ARCOS @ UC3M120

Memory

Bus

INT
I/OI/OI/O

Processor
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Interrupt I/O

ARCOS @ UC3M121

Operation 

request

Data transfer

End of 

block?

Interrupt

Yes

CPU usage.

Execute another 

program

Read state

Ready?

No

proc.           I/O

I/O           proc. 

Transfer data to 

main memory

No

proc.          MM
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Interrupt I/O

ARCOS @ UC3M122

Operation 

request

Data transfer

End of 

block?

Yes

CPU usage.

Execute other

program

Read state

Ready?

No

proc.           I/O

I/O           proc. 

Transfer data to 

main memory

No

proc.          MM What happens when the 

interruption comes?

Interrupt
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Interrupt I/O

ARCOS @ UC3M123

Operation 

request

Data transfer

End of 

block?

Interrupt for each data read:

[a] another program can be executed

[a] waiting loop is avoided

[d] one interrupt per data to be transferred...

Yes

CPU usage.

Execute other

program

Read state

Ready?

No

proc.           I/O

I/O           proc. 

Transfer data to 

main memory

No

proc.          MM

Interrupt
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Example

ARCOS @ UC3M124

 Control information:

 0: read

 1: write

 State information:

 0: device not ready

 1: device (data) ready

 Memory-mapped I/O:

 lw/sw MIPS instructions

request: 
// read request

p.counter = 0;

p.neltos = 100;  

out(0x500, 0) ;   // request read first element

// Voluntary context switching (V.C.S.)

I/O module

State reg.

Data reg.

Control reg.

0x0504

0x0508

0x0500

Addresses

INT_05:   
in(0x508, &(p.status)) ;                      // read state

in(0x50C, &(p.data[p.counter])) ;    // read data

if ((p.counter < p.neltos) && (p.status == OK)) {

p.counter++ ;

out(0x500, 0) ;  // request read next elto.

} else { // process.state to READY  }

return_interrupt # restore registers & return
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DMA I/O

ARCOS @ UC3M125

Memory

Bus

INT
I/OI/O

DMA

I/O

Processor

BUSACK

BUSRQ

 A coordination is needed to control the access to memory from the 

processor and I/O modules
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DMA I/O

ARCOS @ UC3M126

 DMA: Direct Memory Access

 CPU does not carry out the transfer between the I/O 

module and the memory

 With interrupts the synchronization loop is avoided, 

but the transfer is carry out by CPU

 For a block with N bytes, N interrupts are needed

 Using DMA, the whole transfer is done by the I/O module

 Only one interrupt at the end

Proc.

Memory

I/O

With DMA

Without

DMA

Without

DMA
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Transfer a block using DMA

ARCOS @ UC3M127

proc.

Memory

I/O

With DMA

Without 

DMA

Without 

DMA

Operation 

request

CPU usage.

Execute 

other

program

Transfer the 

block to 

memory

Proc.            I/O

Dev.          I/O

I/O             MM
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Transfer a block using DMA

ARCOS @ UC3M128

proc.

Memory

I/O

With DMA

Without 

DMA

Without 

DMA

Operation 

request

CPU usage.

Execute 

other

program

Transfer the 

block to 

memory

Proc.            I/O

Operation ends
Interruption

•At the end of the entire transfer

• [v] another program can be executed

• [v] a single interrupt

Dev.          I/O

I/O             MM
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Simplified structure of I/O module for DMA

ARCOS @ UC3M129

Control reg.

Counter reg.

M.M. address

I/O module

buffer
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Data transfer with DMA

ARCOS @ UC3M130

 The processor writes in I/O 

registers (using I/O instructions)

 Operation (control reg.)

 Read, write, etc.

 The number of bytes to 

transfer (counter reg.)

 Memory address where:

 Data are stored (write in 

device)

 Store the data (reading 

from device) 

Control reg.

Counter reg.

M.M. address

I/O module

buffer
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Data transfer with DMA

ARCOS @ UC3M131

Control reg.

Counter reg.

M.M. address

I/O module

buffer

 I/O module transfers the 

data block from the device 

to the internal buffer inside 

the I/O module (in a 

reading operation)
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Data transfer with DMA

ARCOS @ UC3M132

Control reg.

Counter reg.

M.M. address

I/O module

buffer

Main memory

The I/O module transfers the data block:

while (counter > 0)

{

Byte (word) -> MP[MM_address]

MM_address++

counter--

}
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Data transfer with DMA

ARCOS @ UC3M133

Control reg.

Counter reg.

M.M. address

I/O module

buffer

Main memory

When the data block transfer is completed, 
the I/O module generates an interrupt

Processor

INT
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I/O module access to M.M.

ARCOS @ UC3M134

 A coordination is needed to control the access to 

memory from the processor and I/O modules

Processor

Main memoryI/O with DMA

Data bus

Address bus

BUSRQ

BUSACK

INT
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I/O module access to MM:
Cycle stealing

ARCOS @ UC3M135

 When the I/O module is ready to transfer a word:

 Activates BUSRQ signal to request bus access

 At the end of each phase of an instruction, the processor 
checks this signal. If this signal is activated, the processor 
does not use the buses and activate the BUSACK signal

 The I/O module access to memory and then deactivate 
BUSRQ signal

 The processor then can use the buses

 At the end of the data block transfer, the I/O module sends 
an interrupt signal to the processor.
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Curiosity: the importance of drivers
Linux kernel

ARCOS @ UC3M136

 +70% of Linux code is related to device drivers.

https://github.com/satoru-takeuchi/linux-kernel-statistics
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