
Lesson 1
Introduction

Operating systems design

Degree in Computer Science and Engineering

Grupo ARCOS

Universidad Carlos III de Madrid



Alejandro Calderón Mateos

Recommended materials

ARCOS @ UC3M2

1. Carretero 2007:
1. Cap. 2

1. Tanenbaum 2006:
1. Cap.1

1. Stallings 2005:
1. Parte uno. Transfondo.

1. Silberschatz 2006:
1. Cap.1

Base Recommended



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M3

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M4

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

What is an Operating System?

ARCOS @ UC3M5

▶Operating system: software designed
to communicate users and hardware and to manage the
available resources efficiently.

Hardware

Operating system

User



Alejandro Calderón Mateos

What is an Operating System?

ARCOS @ UC3M6

Hardware

Operating system

System Software

Application SoftwareUser

▶Operating system: software designed
to communicate users and hardware and to manage the
available resources efficiently.



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M7

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Operating system functionalities

ARCOS @ UC3M8

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.

Hardware

User
Operating system



Alejandro Calderón Mateos
ARCOS @ UC3M9

Hardware

User
Operating system

Operating system functionalities

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.



Alejandro Calderón Mateos

Fundamental abstractions
Processes

ARCOS @ UC3M10

▶ Processes, process table, process tree
▶ Basic image, scheduling, signals
▶ Users and group identifications
▶ User interface (shell)

https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx

Ready Running

Waiting

New process Finished



Alejandro Calderón Mateos

Fundamental abstractions
Files

ARCOS @ UC3M11

▶Files and directories

▶Path, working directory and root.

▶Protection

▶File descriptors

▶Special files:
▶ I/O Devices

▶ Pipes

▶Standard input/ourput/error.

https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx

Directorio raíz

tmp usretc

pitmia



Alejandro Calderón Mateos

Operating system functionalities

ARCOS @ UC3M12

Hardware

User
Operating system

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.



Alejandro Calderón Mateos

Resource management

ARCOS @ UC3M13

▶ Processing management
▶ Scheduling
▶ Priorities, multi-user

▶ Memory management
▶ Memory assignement among processes with protection and sharing.

▶ Storage management – File systems
▶ Offers an unified logical vision for users and programs that is independent of the

physical storage.

▶ Device management
▶ Hide away the hardware dependencies
▶ Provide support for concurrent accesses



Alejandro Calderón Mateos

Operating system functionalities

ARCOS @ UC3M14

Hardware

User
Operating system

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.



Alejandro Calderón Mateos

User interface

ARCOS @ UC3M15

▶Programming interface:
▶System calls.

▶User interface:
▶command-line interface or CLI

▶Graphic Interface o GUI

ret = close (filedesc) ;

http://www.guidebookgallery.org/screenshots/commandprompt
http://www.guidebookgallery.org/screenshots/full



Alejandro Calderón Mateos
ARCOS @ UC3M16

Hardware

User
Operating system

Operating system functionalities

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.



Alejandro Calderón Mateos

Virtual machines

ARCOS @ UC3M17

▶ An operating system virtualize part of the hardware 
elements; Why not virtualize all of them?

▶ IBM used this idea on their mainframes since 70s.

▶ An hipervisor virtualize the whole computer, allowing
the execution of multiple operating systems at the
same time.

▶ Virtualization:
▶ [+] offers an excelent system isolating among systems

and reduces costs thanks to the flexible resource
allocation.

▶ [-] overheads

http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html

Hardware

Hipervisor (VMM)

S.O. S.O. 

Apl. Apl.

… Mg

mt



Alejandro Calderón Mateos

Virtual machines

ARCOS @ UC3M18 http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html

Different
Hardware

… same O.S.

… do not
colaborate
with the
hypervisor

Containers

Para-virtualization

Full 
virtualization

HW. emulation

… different O.S.
… colaborate
with the
hypervisorSame hardware and…



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M19

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Main features

ARCOS @ UC3M20

▶Portable

▶Adaptative

▶Multidisciplinary

▶Complex

▶Sensitive



Alejandro Calderón Mateos

Portability

ARCOS @ UC3M21

Mainframe
OS/360, z/OS, …

Minicomputers y PC
Unix, MacOs, Windows, … Embedded

VxWorks, QNX, LynxOS, 
Android, iOS, 

Windows Embedded, …

Supercomputer
Unix, Linux, …



Alejandro Calderón Mateos

▶Same hardware, different O.S.: IBM PC

▶Same O.S., different hardware: Unix

1) Portability

ARCOS @ UC3M22

IBM PC

DR-DOSLinux

IBM PC

Unix

CRAY-Y/MP

…

…

Portability



Alejandro Calderón Mateos

2) Adaptive to changes

ARCOS @ UC3M23

▶New user requirements:
▶Voice recognition, multitouch, etc.

▶Hardware evolution:
▶Controllers for new devices
▶Multicore systems, virtualization, etc.

▶Integrate solutions for different environments:
▶Batch processing, multiprogramming, shared CPU time, etc.
▶Multiuser, cooperative work, etc.
▶Distributed systems, network services, etc.



Alejandro Calderón Mateos

3) Multidisciplinary software

ARCOS @ UC3M24

▶Integrates works from different areas: 
User interface, system software, artificial intelligence, security, software 
engineering, etc.

http://work-at-home-data-entry.com/wp-content/uploads/2014/10/Work-from-home-team-group-of-workers-icon.png



Alejandro Calderón Mateos

4) Complex software

ARCOS @ UC3M25

▶Many lines of code.
▶Many working groups.



Alejandro Calderón Mateos

4) Complex software

ARCOS @ UC3M26 http://www.zdnet.co.uk/reviews/desktop-os/2010/11/20/a-quarter-century-of-windows-40090900/5/#top

▶Many lines of code.
▶Many working groups.



Alejandro Calderón Mateos

4) Complex software

ARCOS @ UC3M27 http://www.zdnet.co.uk/reviews/desktop-os/2010/11/20/a-quarter-century-of-windows-40090900/5/#top

▶Many lines of code.
▶Many working groups.



Alejandro Calderón Mateos

5) Sensitive software

ARCOS @ UC3M28

▶An error in a driver (software in charge of managing a device) may block 
the entire system.

▶ It may work with data that should be carefully treated to not expose the
information to not legitimate users nor lose them.



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M29

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Goals of an operating system design

ARCOS @ UC3M30

▶Performance and efficiency.
▶ Low overheads, efficient resource usage

▶Stability: robustness and resilence
▶ Uptime, aceptable degradationde, reliability and integrity

▶ Capacity: flexibility and compatibility
▶Security and protection

▶ Protection among users

▶ Security

▶Portability
▶Clarity
▶Extensibility

http://www.cc.gatech.edu/~pwh/



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M31

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Operating system structure

ARCOS @ UC3M32

Hardware

Kernel

Services

Shell

Users

Aplications
API

Operating 

system▶Resource management.

▶Extended machine.

▶User interface

▶Programming interface



Alejandro Calderón Mateos

Operating system structure
Monolithic (macrokernel)

ARCOS @ UC3M33

▶monolothic system.
▶Unstructured.
▶Every point can access to any 

variable or fuction of other 
kernel part.

▶[I] Poor maintanability, error 
sensitive.

App App

System services

Hardware

Procedures and 

structures of the 

operating system:

User space

Kernel 

space



Alejandro Calderón Mateos

Operating system structure
subsystems

ARCOS @ UC3M34

▶Monolithic system comprised by 
logic subsistems that provides 
well defined interfaces as entry 
points.

▶The subsystems groups related 
procedures and structures.

▶e.g: Linux

App App

Servicios del sistema

Hardware

Subsystem 1

User space

Kernel space

…



Alejandro Calderón Mateos

Operating system structure
Layered

ARCOS @ UC3M35

▶Structured in logic layers.
▶Each layer only provide access to 

lower layers.

▶e.g:
▶THE (Dijkstra) 
▶Multics, this operating system added the 

privilege rings.

App App

System services

Hardware

User space

Kernel space

I/O device management

Scheduling and IPC

Memory management



Alejandro Calderón Mateos

Operating system structure
Microkernel

ARCOS @ UC3M36

▶The main componentes are 
executed outside the kenel 
space.

▶microkernel:
▶ Scheduling and process management.

▶ Basic virtual memory management.

▶ Basic communication among processes.

▶e.g:
▶Match, QNX, Minix, L4, etc.

Memory 

server
App

Network

server

Process 

server

File 

server ...

Microkernel

Hardware

petición

respuesta

Modo Usuario

Modo Kernel



Alejandro Calderón Mateos

Operating system structure
Windows 2000 (simplified)

ARCOS @ UC3M37

User

Kernel

Executive

Drivers Kernel

Win32
User 

applications
Subsytems DLLs

System 

processes and 

sevices

POSI

X
OS/2

Win32

User/GDI

Environment subsystems

Ntdll.dll

Hardware Abstraction Layer (HAL)

http://technet.microsoft.com/en-us/library/cc750820.aspx



Alejandro Calderón Mateos

Example of a subsytem operating system
Linux (simplified)

ARCOS @ UC3M38

Usuario

Kernel

Núcleo

Servicios

Shell



Alejandro Calderón Mateos

Real O.S.
Linux (‘less’ simplified)

http://www.makelinux.net/kernel_map.shtml ARCOS @ UC3M39



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M40

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Operating system structure

ARCOS @ UC3M41

Hardware

Kernel

Services

Shell

User

Aplications

Operating 

system

API

▶Resource management
▶Extended machine

▶User interface

▶Programming interface



Alejandro Calderón Mateos

Asynchronous execution
Execution (general)

ARCOS @ UC3M42

------------------
------------------
------------------
------------------
------------------

t



Alejandro Calderón Mateos

Asynchronous execution
execution (general)

ARCOS @ UC3M43

------------------
------------------
------------------
------------------
------------------ ------------------

------------------
------------------
------------------
------------------

t

hx

ex

When a new event happens 

(ex) the corresponding 

handler is executed (hx)



Alejandro Calderón Mateos

Asynchronous execution
Execution (general)

ARCOS @ UC3M44

------------------
------------------
------------------
------------------
------------------

------------------
------------------
------------------
------------------
------------------

------------------
------------------
------------------
------------------
------------------

t

hx

ex

At the end of the handler 

execution, the execution is 

resumed at the point it was 

interrupted.



Alejandro Calderón Mateos

Asyncrhonous execution
Source code (general)

ARCOS @ UC3M45

int main ( … )
{

…
On (event1, handler1) ;
…

}

1) Asociate handler 1 

to event 1



Alejandro Calderón Mateos

Asynchronous execution
Source code (general)

ARCOS @ UC3M46

int main ( … )
{

…
On (event1, handler1) ;
…

}

void handler1 ( … )
{
}

…

2) Implement the event handler 

function

1) Asociate handler 

1 to event 1



Alejandro Calderón Mateos

Asynchronous execution
Source code (general)

ARCOS @ UC3M47

2) Implement the event 

handler function

3) To communicate functions , we 

employ global variables.int global1;  
…

int main ( … )
{

…
On (event1, handler1) ;
…

}

void handler1 ( … )
{
}

…



Alejandro Calderón Mateos

Example of asynchronous execution
Signals

ARCOS @ UC3M48

#include<stdio.h>
#include<signal.h>
#include<unistd.h>

void sig_handler (int signo)
{

if (signo == SIGINT)
printf("received SIGINT\n");

}

int main(void)
{

if (signal(SIGINT, sig_handler) == SIG_ERR) 
printf("\ncan't catch SIGINT\n");

sleep(60); // simula un proceso largo.

return 0;
}

signal.h

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code/



Alejandro Calderón Mateos

Asynchronous execution
Simplified example

ARCOS @ UC3M49

S.O.

HW.

App.

CPU Disc
o

RAM

• char buffer[1024];
…

• read(fd,buffer)
•

Pi



Alejandro Calderón Mateos

Asynchronous execution
Simplified example

ARCOS @ UC3M50

S.O.

HW.

App.

CPU Disc
o

RAM

• Ask for a block
• Run Pi +1

• char buffer[1024];
…

• read(fd,buffer)
•

Pi

syscall



Alejandro Calderón Mateos

Asynchronous execution
Simplified example

ARCOS @ UC3M51

S.O.

HW.

App.

CPU Disc
o

RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall



Alejandro Calderón Mateos

Asynchronous execution
Simplified exemple

ARCOS @ UC3M52

S.O.

HW.

App.

CPU Disc
o

RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall



Alejandro Calderón Mateos

Asinchronous execution
Simplified example

ARCOS @ UC3M53

S.O.

HW.

App.

CPU Disc
o

RAM

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall

hw_int



Alejandro Calderón Mateos

Asinchronous execution
Simplified example

ARCOS @ UC3M54

S.O.

HW.

App.

CPU Disc RAM

hw_int

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi • char buffer[1024];
…

• read(fd,buffer)
•syscall

Pi +1 • int x;
…

• for (x=0; x<900; x++);

• Ask for a block
• Run Pi +1



Alejandro Calderón Mateos

Operating system structure
Source code (general)

ARCOS @ UC3M55

int global1;  
…

int main ( … )
{

…
On (event1, handler1) ;
On (event2, handler2) ;      
On (event3, handler3) ;
…

}

void handler1 ( … ) { xxx }

…

void handler2 ( … ) { xxx }

void handler3 ( … ) {                   }i.h. 1

syscall

i.h. 2

Disc

Net

App 1

…

• Copy to
• Pu ready
• Continue Pv



Alejandro Calderón Mateos

Periferal i

Hardware interrupts

ARCOS @ UC3M56

▶ Each periferal (able to generate an interrupt request) its associated to a given interrupt line or IRQ (Interrupt 
ReQuest)

▶ All lines are connected to a PIC (Programmable Interrupt Controller)
▶ Currently, modern achitectures uses APIC (Advanced Programmable Interrupt Controller)

▶ The PIC is connected to the CPU by the pending interrupt line (INT)

▶ Both PIC and CPU are connected by data bus.

Understanding the Linux kernel (2nd edition)

PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...



Alejandro Calderón Mateos

Hardware interrupts

ARCOS @ UC3M57

▶ PIC monitorizes the IRQ lines waiting for a signal.

▶ When a signal arrives:
▶ Associate the corresponding IRQ to a value stored in a given PIC register (namely vector)

▶ Signals the CPU through the pending interrupt line (INT)

▶ The CPU read the vector register as an I/O port or memory address

▶ The CPU writes in the PIC control register that it already accessed the vector

▶ The PIC deactivate the pending interrupt line, clears the vector and start monitoring again…

Understanding the Linux kernel (2nd edition)

Periferal i
PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...



Alejandro Calderón Mateos

Hardware interrupts

ARCOS @ UC3M58

▶ PIC may allow disable the IRQ
▶ In that case, the PIC does not signals the CPU of a given IRQ and are enqueued until they are enabled. 

▶ Disabling an interruption at the CPU level (mask/unmask) is different: the CPU ingnores the INT.

▶ Additionally, the PIC may have priority levels
▶ Each IRQ is associated with a given priority level

▶ If there are multiple IRQ, the PIC ‘processes’ those with the highest priority 

▶ If the PIC does not support priority level, it can be simulated by the operating system at software level.

Understanding the Linux kernel (2nd edition)

Periferal i
PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...



Alejandro Calderón Mateos

Hardware interrupts

ARCOS @ UC3M59

▶ The CPU receives the INT request

▶ Copies the vector through the data bus and notifies the PIC (ACK)

▶ Searches in the Interrupt Descriptor Table (IDT) for the associated function handler

▶Stores the processor state at the stack, executes in privileged mode and runs the ISR
▶ Multiple ISR (do_IRQ) may share the same interrupt

▶ Multiple interrupt may share a generic handler function.

▶Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...

Periferal i



Alejandro Calderón Mateos

System call

ARCOS @ UC3M60

S.O.

HW.

App.

CPU Disc RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•syscall

• Ask for a block
• Run Pi +1



Alejandro Calderón Mateos

Llamada al sistema

ARCOS @ UC3M61

▶ There exists an assembly intruction to generate an interrupt by software

▶ Searches in the Interrupt Descriptor Table (IDT) for the associated function handler

▶ Stores the processor state at the stack, executes in privileged mode and runs the ISR

▶ Multiple IST (do_IRQ) may share the same interrupt

▶ Multiple interrupt may share a generic handler function.

▶ Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

CPU

Bus Datos

INT

IDT

IRQi_interrupt(
)

do_IRQ(
i)

Int. i descriptor

...



Alejandro Calderón Mateos

Contents

ARCOS @ UC3M62

1. What an Operating System is.
1. Definition, main functionalities and features

1. Operating system structure.
1. Main goals, structure and asynchronous execution.
2. Kernel and modules



Alejandro Calderón Mateos

Executables 

ARCOS @ UC3M63

▶Older kernels:
▶Included the code for

all possible devices.
▶From time to time it was necessary 

to recompile the kernel to add support for 
new devices.

▶It was distributed as a set of executables.

http://www.cc.gatech.edu/~pwh/

I/O device management

D#10D#15



Alejandro Calderón Mateos

Modules 

ARCOS @ UC3M64

▶Were desinged to conditonally include device 
controllers (drivers)
▶They allow to dinamically include pre-

compiled drivers.
▶Are distributed as dynamic libraries for 

the kernel (.so/.dll).
▶A given module may be downloaded when 

the device won't be used again.

http://www.cc.gatech.edu/~pwh/

I/O device management

D#10

D#15



Alejandro Calderón Mateos

Módules

ARCOS @ UC3M65

▶Most of the current operating 
systems support modules:
▶ Linux, Solaris, BSD, Windows, etc.

▶Currently, the modules are not only used for 
drivers, but also to incorporate new 
functionalities:
▶ Eg.: Linux kernel extensively uses modules for file 

systems, network protocols, system calls, etc.

http://www.cc.gatech.edu/~pwh/

App App

Kernel

F#18



Alejandro Calderón Mateos

Modules
Windows 2000

ARCOS @ UC3M66



Lesson 1
Introduction

Operating systems design

Degree in Computer Science and Engineering

Grupo ARCOS

Universidad Carlos III de Madrid


