Grupo ARCOS
Universidad Carlos III de Madrid

LLesson 1
Introduction

Operating systems design
Degree in Computer Science and Engineering

[SIoEIe)

Recommended materials

=
SISTEMAS

CrERATIVGS

B Ay S S

Base Recommended
1. Carretero 2007: . Tanenbaum 2006:
Cap. 2 Cap.1

1. Stallings 2005:

Parte uno. Transfondo.

1. Silberschatz 2006:
Cap.1

2 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

3 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

4 Aleja'r%%cég?&@n Hg;c:egcl)\gl

What is an Operating System?

>

Operating system: software designed

to communicate users and hardware and to manage the

available resources efficiently.

p—

User

Operating system

Hardware

@

Aleja'r?c‘i%c&g?&@n H\

C3M

ateos

What is an Operating System?

>

Operating system: software designed

to communicate users and hardware and to manage the

available resources efficiently.
u - =
User muse || €D } Application Software

O 4

e || B } System Software

Operating system

Hardware

©

Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

! Aleja'r%%cég?&@n Hg;c:egcl)\gl

Operating system functionalities

[»]User interface
[»|Resource manager:
CPU, memory, etc.

»|Extended machine:
Services, programming interface, etc.

8 Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Operating system functionalities

R

»|User interface

[»|Resource manager:
CPU, memory, etc.

[»|Extended machine:
Services, programming interface, etc,

9 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Fundamental abstractions
Processes

[»] Processes, process table, process tree
[»] Basic image, scheduling, signals

[»] Users and group identifications

[»] User interface (shell)

New process Finished - \

/'
D @ e
D E F

w Process tree

10 : i i i i i R @ C3M
https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx Aleja'r?c‘iroc(\fg?§er h Hateos

[»] Files and directories

[»] Path, working directory and root.
[»]| Protection

[»] File descriptors

[»] Special files:
] 1/O Devices
»| Pipes
[»] Standard input/ourput/error.

> o1 . : : ic/curri : R C3M
https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx Alejaéro%9§e@n Hateos

Operating system functionalities

»]User interface

[»]Resource manager:
CPU, memory, etc.

»|Extended machine:
Services, programming interface, etc.

12 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Resource management

[»] Processing management
Scheduling
Priorities, multi-user

[»] Memory management
Memory assignement among processes with protection and sharing.
] Storage management — File systems

Offers an unified logical vision for users and programs that is independent of the
physical storage.

»] Device management
Hide away the hardware dependencies
Provide support for concurrent accesses

13 Alejahdro 15 @, HGEY

Operating system functionalities

»|User interface

»|Resource manager:
CPU, memory, etc.

»|Extended machine:
Services, programming interface, etc.

14 Alejahdro 15 @, HGEY

User interface

[>]Programlnming interface:
System calls. ret = close (filedesc) ;

»|User interface:
command-line interface or CLI

Graphic Interface o GUI
15 http://www.guidebookgallery.org/screenshots/commandprompt) R) C3M
http://www.guidebookgallery.org/screenshots/full A]e]a'l%r0%9§el@1 Hateos

Operating system functionalities

R

»|User interface

[»|Resource manager:
CPU, memory, etc.

[»|Extended machine:
Services, programming interface, etc,

16 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Virtual machines

Apl. Apl.

S.0. S.O. |\/|g

mt
Hipervisor (VMM)

Hardware

[~] An operating system virtualize part of the hardware
elements; Why not virtualize all of them?

[»] IBM used this idea on their mainframes since 70s.
[~] An hipervisor virtualize the whole computer, allowing

the execution of multiple operating systems at the
same time.

[»] Virtualization:

[+] offers an excelent system isolating among systems
and reduces costs thanks to the flexible resource
allocation.

[-] overheads

17 http://www-128.ibm.com/developerworks/library/I-linuxvirt/index.html Aleja'r%ﬁ)%9§er@)n Hg;c:egcl)\gl

Virtual machines

Apps Apps

Apps

Guest OS5 Guest OS Guest OS5

e asuree fresenser emuluses

(&) vware

Full
virtualization

Scor

Para-virtualization

Different Hardware WM A Hardware VM B HW. emUIation
Hardware S
.. do not
Co labo rate Suest OS Guest OS Mgmt
With the Hypervisor (WVIMM}
. hypervisor o
.. different O.S. yP S
.. colaborate| . | wosres —
With the Hypervisor (VMM)
Same hardware and.. hypervisor
... same O.S. cporatng syetom :
Containers
18 http://www-128.ibm.com/developerworks/library/I-linuxvirt/index.html

Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

19 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Main features

20

Portable

Adaptative
Multidisciplinary
Complex

Sensitive

Aleja'r%ﬁ)cég?&@n Hg;c:egcl)\gl

Portability

Supercomputer
Unix, Linux, ...
Mainframe _
0OS/360, z/O0S, ... |
Minicomputers y PC u , =
Unix, MacOs, Windows, ... Embedded
VxWorks, QNX, LynxOS,
Android, iOS,
Windows Embedded,; .

21 Aleja'r?c‘j%(%g&r@)n Hg;cgcl)\s/l

1) Portability

[»]Same hardware, different O.S.: IBM PC

Linux

DR-DOS

IBM PC

»]Same O.S., different hardware: Unix

22

Unix

CRAY-Y/MP

IBM PC

Portability

Aleja'r?c‘j%%g?&g'}n H

C3M

ateos

2) Adaptive to changes

»|New user requirements:

[»]Voice recognition, multitouch, etc.

[»|Hardware evolution:
Controllers for new devices
Multicore systems, virtualization, etc.

[»]Integrate solutions for different environments:
Batch processing, multiprogramming, shared CPU time, etc.
Multiuser, cooperative work, etc.
Distributed systems, network services, etc.

23 Alejaﬁbc‘j%(%g‘?&r@n Hg;cgcl)\g

3) Multidisciplinary software

[»]Integrates works from different areas:
User interface, system software, artificial intelligence, security, software
engineering, etc.

24 http://work-at-home-data-entry.com/wp-content/uploads/2014/10/Work-from-home-team-group-of-workers-icon.png Aleja'r?c‘]ﬁa%%?%l@w Hg;cg(l)\gl

4) Complex software

Many lines of code.
Many working groups.

25 Alejahdro 15 @, HGEY

4) Complex software

[»] Many lines of code.
[»| Many working groups.

Dev team size

> 26 http://www.zdnet.co.uk/reviews/desktop-0s/2010/11/20/a-quarter-century-of-windows-40090900/5/#top Aleja'nbalr?o%(a?§e@n chg(l)\gl

4) Complex software

Many lines of code.
Many working groups.

Source Lines of Code (millions)
&0
Windows Server 2003

27 - i .)) of-wi) R C3M
http://www.zdnet.co.uk/reviews/desktop-0s/2010/11/20/a-quarter-century-of-windows-40090900/5/#top A]eja'l%ro%9§el@1 Hateos

5) Sensitive software

An error in a driver (software in charge of managing a device) may block
the entire system.

It may work with data that should be carefully treated to not expose the
information to not legitimate users nor lose them.

28

Alejan E\:)%Qit@w Hg;cgé\g

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

29 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Goals of an operating system design

[»]Performance and efficiency.

Low overheads, efficient resource usage

[~]Stability: robustness and resilence
Uptime, aceptable degradationde, reliability and integrity

= Capacity: flexibility and compatibility
[~]Security and protection

Protection among users

Security

[~]Portability
[~]Clarity
»]Extensibility

30 http://www.cc.gatech.edu/~pwh/ A|ejaﬁac‘j%%9§e@n Hg;c:egcl)\gl

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

3l Aleja'r%%cég?&@n Hg;c:egcl)\gl

Operating system structure

32

Users

Aplications

Shell

[»]User interface

Services

Kernel

Hardware

) API

[»]Programming interface
[»]Resource management.
[»]Extended machine.

\

J

Operating
system

Aleja'r?c‘iﬁ)cég?&@n H

C3M

ateos

Operating system structure
Monolithic (macrokernel)

monolothic system.

Unstructured.

Every point can access to any

variable or fuction of other
kernel part.

[I] Poor maintanability, error

33

sensitive.

App

User space

App

Kernel

System services space

Procedures and
structures of the
operating system:

Hardware

Aleja'r%%cég?&@n Hg;c:egcl)\gl

Operating system structure

subsystems
»|Monolithic systemn comprised by App App
logic subsistems that provides dsesgace
well defined interfaces as entry S0 C) SR
points.

»|The subsystems groups related
procedures and structures.

> e.g: Linux Subsystem 1

Hardware

34 Alejaﬁ%ﬁ)cég&@n Hg;c:egcl)\gl

Operating system structure
Layered

[>]Structured in logic layers.
[~1Each layer only provide access to

lower layers.

rle.g:

35

THE (Dijkstra)

Multics, this operating system added the

privilege rings.

App App

User space
Kernel space

System services

I/0O device management
Scheduling and IPC

Memory management

Hardware

Aleja'r%%cég?&@n Hg;c:egcl)\gl

Operating system structure

Microkernel

[»]The main componentes are
executed outside the kenel

space.
[»microkernel:

Scheduling and process management.
Basic virtual memory management.
Basic communication among processes.

rle.g:
Match, QNX, Minix, L4, etc.

36

Memory 'Network

A
PP server server

File
Process . server '

server T
Modo Usuari

Modo Kernel l
\ 4

Microkernel J

respuesta

Hardware

Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Operating system structure
Windows 2000 (simplified)

- I | Environment subsystems

System oo
rocesses and JSEl . POS|
i sevices applications 0S/2 Win32 X
Subsytems DLLs

I

‘ !

Executive

Win32

Drivers User/GDI

Hardware Abstraction Layer (HAL)

37 http://technet.microsoft.com/en-us/library/cc750820.aspx Alejaﬁbc‘j%%g?(?er@n Hg;cgcl)\g

Example of a subsytem operating system
Linux (simplified)

Shell
[User Level Programs
: mmtbm HnEE Jeuaro
Servicios . S . Kernel
H
= File MNetwork Device Process Imer-process Memoxy
Systems | | Manager 4 Drivers | Manager ormmunication || Manager
. Management
Nucleo b
5 [L i T
[
Architecture Dependent Code
-
Hardware
38

Alejahdro 15 @, HGEY

Real O.S.

Linux (less’ simplified)

Linux kernel map
la’myewrstmmm human interface system processing memory storage networking
Hi char devices . Interfaces core o=t ocesses . .. Memoryaccess _ files & directories _ sockets access
user come w20 S Catvet wmwe T e :1.: ks = M‘Z:I =
spm 4 = ————— = - e o — . =:.==._:_ e
interfaces .~ = .. Sy e / —min e e
ST — \e o= oo [

~

user peripherals
electronics

memory disk controllers

network controllers

http://www.makelinux.net/kernel_map.shtml

Alejaﬁaaﬁ)%g?&@n HC3M

ateos

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kerneland modules

40 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Operating system structure

41

User

Aplications |

Shell

[»]User interface

Y Y

Services

Kprn,el

Hardware

< API

[»]Programming interface

[»]Resource management
[»]Extended machine

\

J

Operating
system

Aleja'r?c‘iﬁ)cég?&@n H

C3M

ateos

Asynchronous execution
Execution (general)

42 Aleja'r?aﬁ)cég?&@n Hg;c:egcl)\gl

Asynchronous execution

execution (general)

43

When a new event happens
(e,) the corresponding
handler is executed (h,)

Aleja'r?c‘iﬁ)cég?&@n Hg;c:egcl)\gl

Asynchronous execution

Execution (general)

44

At the end of the handler)
execution, the execution is
resumed at the point it was

- Interrupted.

_/
Alejaé_}j%ktggertg)n M

C3M

ateos

Asyncrhonous execution
Source code (general)

int main (...)
{ 1) Asociate handler 1

On (event1, handler1) : to event 1

45 Alejahdro 15 @ HG2N

Asynchronous execution
Source code (general)

void handler1 (...) 2) Implement the event handler

{ function

}

int main (...)

{ 1) Asociate handler

on (eventl, handlerl) ; ltoeventl

46 Alejaﬁ%ﬁ)cég&r@n Hg;c:egcl)\gl

Asynchronous execution
Source code (general)

3) To communicate functions , we
int globall; employ global variables.

void handler1 (...) 2) Implement the event

{ handler function
}
int main (...)
{
On (eventl, handlerl) ;
}

4 Alejahde 15 @ HG2

Example of asynchronous execution
Signals

signal.h
#include<stdio.h> g

#include<signal.h>
#include<unistd.h>

void sig_handler (int signo)
{
if (signo == SIGINT)
printf("received SIGINT\n");
}

int main(void)

if (signal(SIGINT, sig_handler) == SIG_ERR)
printf("\ncan't catch SIGINT\n");

sleep(60); // simula un proceso largo.

return O;

}

48 http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code/ Alejaﬁ%ﬁ)99§e@n HCBM

ateos

Asynchronous execution
Simplified example

P char buffer[1024];
App. read(fd buffer)

S.0.

3
HW. D

49 O

@)
b
-

RAM

Aleja'l%%%9§er@1 H

C3M

ateos

Asynchronous execution
Simplified example

P char buffer[1024];
APP: read(fd buffer)

syscall

. Atc,k for a block
*RunP,

S.0.

@)
b
-

4>
HW, =
> RAM

o
>0 Alejahdro 15 @, HGEY

Asynchronous execution
Simplified example

" charbuffer[1024];, "1+ }intx;
App-. read(fd buffer) for (x=0; x<900; x++);

syscall

. Atc,k for a block
*RunP,

S.0.

@)
b
-

4>
HW. =
D RAM

o
°1 Alejahdro 15 @, HGEY

Asynchronous execution
Simplified exemple

" charbuffer[1024], 1+1 dintx; Y,
App. read(fd buffer) for (x=0; x<900; x++);

syscall

. Atc,k for a block
*RunP,

S.0.

@)
b
-

4>
HW. =
D RAM

o
52 Alejaﬁbc‘j%%g?(?er@n Hg;cgcl)\g

Asinchronous execution
Simplified example

P char buffer[1024]; Pi s Int x; /
App. read(fd buffer) for (x=0; x<900; x++);

syscall

. Avsk for a block

* RunP, . * Copy to RAM
S.0. | * P, ready
* Continue P, 4

hw_int

|

RAM
o
53 Alejaf%%(%g&r@)n Hg;cgcl)\s/l

(@)
)

Asinchronous execution
Simplified example

P char buffer[1024]; Pieir]. int x;
App-. read(fd buffer) + for (x=0; x<900; x++);

syscall

. Avsk for a block

* RunP, . * Copy to RAM
S.0. | * P, ready
* Continue P, 4

hw_int

—I |
HW. i i E
U D

RAM
>4 Alejahdro 15 @, HGEY

(@)
)

Operating system structure
Source code (general)

int globall;
void handler1 (...) { xxx } syscall
void handler2 (...) { xxx } Tt
ih. 1 void handler3 (...) { - Copyto } App 1
1. * P, ready
—————————————— > * Continue P,
Net int main (...)
Ciho2 A
T 7 On (eventl, handlerl) ;
Disc On (event2, handler2) ;
On (event3, handler3) ;
}

o5 Alejahde 15 @ HG2

Hardware interrupts

ﬁ . .
QEQ:: / —~, Int. i descriptor
INT_,
~ vector
Data bus \
IRQi_interrupt()

[+] Each periferal (able to generate an interrupt request) its associated to a given interrupt line or IRQ (Interrupt
ReQuest)

[»] Alllines are connected to a PIC (Programmable Interrupt Controller)

Currently, modern achitectures uses APIC (Advanced Programmable Interrupt Controller)
[»] The PICis connected to the CPU by the pending interrupt line (INT)
[»] Both PIC and CPU are connected by data bus.

IDT

do_IRQ(i)

56 Understanding the Linux kernel (2nd edition) Alejaﬁac\i%cég?§e@n ch:egcl)\g

Hardware interrupts

— Int.id .
©_LE.Q_, INT / —~,Int. | descriptor
~ vector
Data bus \
IRQi_interrupt()

[»] PIC monitorizes the IRQ lines waiting for a signal.

IDT

do_IRQ(i)

»] When a signal arrives:
Associate the corresponding IRQ to a value stored in a given PIC register (namely vector)
Signals the CPU through the pending interrupt line (INT)
The CPU read the vector register as an I/O port or memory address
The CPU writes in the PIC control register that it already accessed the vector

The PIC deactivate the pending interrupt line, clears the vector and start monitoring again...

o7 Understanding the Linux kernel (2nd edition) A]eja’r?c‘i%%g(?el@n H%gé\g

Hardware interrupts

—> Int.id ipt
Q_LE.Q_, NI, / ~, Int. i descriptor
~ vector
Data bus \
IRQi_interrupt()

] PIC may allow disable the IRQ

In that case, the PIC does not signals the CPU of a given IRQ and are enqueued until they are enabled.

IDT

do_IRQ(i)

Disabling an interruption at the CPU level (mask/unmask) is different: the CPU ingnores the INT.

[+] Additionally, the PIC may have priority levels
Each IRQ is associated with a given priority level
If there are multiple IRQ, the PIC ‘processes’ those with the highest priority

If the PIC does not support priority level, it can be simulated by the operating system at software level.

58 Understanding the Linux kernel (2nd edition) A]eja’r?c‘i%%g(?el@n H%gé\g

Hardware interrupts

e ~ . .
@ / —~, Int. i descriptor
INT
- vector
Data bus \
IRQi_interrupt()

»] The CPU receives the INT request
[»] Copies the vector through the data bus and notifies the PIC (ACK)
[»] Searches in the Interrupt Descriptor Table (IDT) for the associated function handler

[»| Stores the processor state at the stack, executes in privileged mode and runs the ISR
>] Multiple ISR (do_IRQ) may share the same interrupt

IDT

do_IRQ(i)

-] Multiple interrupt may share a generic handler function.

[»| Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

59 Aleja'r?aﬁ)cég?&@n Hg;c:egcl)\gl

System call

P char buffer[1024];
APP: read(fd,buffer)

syscall

. Atc,k for a block
*RunP,

S.0.

> |

RAM
60 Alejaﬁbc‘j%(%g‘?&r@n Hg;cgcl)\g

(@)
)

Llamada al sistema

IDT

—~~,Int. i descriptor
—INT)

Bus Datos \ IRQi_interrupt(

)

do_IRQf

] There exists an assembly intruction to generate an interrupt by software
[»] Searches in the Interrupt Descriptor Table (IDT) for the associated function handler
IEI Stores the processor state at the stack, executes in privileged mode and runs the ISR
» Multiple IST (do_IRQ) may share the same interrupt
» Multiple interrupt may share a generic handler function.
|Z| Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

61 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Contents

1. What an Operating Systemis.
Definition, main functionalities and features

1. Operating system structure.
Main goals, structure and asynchronous execution.
2. Kernel and modules

62 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Executables

[»]Older kernels:

Included the code for

_ all possible devices.
I/0 device management

D#15 D#10 From time to time it was necessary
to recompile the kernel to add support for
new devices.

It was distributed as a set of executables.

63 http://www.cc.gatech.edu/~pwh/ Aleja'r%%cég?&@n Hg;c:egcl)\gl

Modules

[»]Were desinged to conditonally include device
controllers (drivers)

They allow to dinamically include pre-
compiled drivers.

Are distributed as dynamic libraries for
the kernel (.so/.dll).

A given module may be downloaded when
the device won't be used again.

I/0 device management

D#10

D#15

64 http://www.cc.gatech.edu/~pwh/ Aleja'r%%cég?&@n Hg;c:egcl)\g

Modules

App App

Kernel

F#18

65

[>]Most of the current operating
systems support modules:

Linux, Solaris, BSD, Windows, etc.

[»]Currently, the modules are not only used for
drivers, but also to incorporate new
functionalities:

Eg.: Linux kernel extensively uses modules for file
systems, network protocols, system calls, etc.

http://www.cc.gatech.edu/~pwh/ Aleja'r?c\jﬁ)cég?(?e@n Hg;c:egcl)\gl

Modules
Windows 2000

Replicator Win32
Session Mgr Alerter POSIX
WinLogon Event Log 08s/2
System Servi Users Environment
ervices e
processes Applications subsystems
Interface DLL Subsystem DLL
User
Kernel

System Service Dispatcher

Monitor Process/ Objects Memory in32k
Subsystem | Seguridad | Threads services Mgmt \/W'n -Sys

File Gestion de Objectos

systems

ntoskrnl.exe
Hardware AbstractionLayer (HAL) \/
Hal.dU

66 Alejahdro 15 @, HGEY

Grupo ARCOS
Universidad Carlos III de Madrid

LLesson 1
Introduction

Operating systems design
Degree in Computer Science and Engineering

[SIoEIe)

