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What is an Operating System?

ARCOS @ UC3M5

▶Operating system: software designed
to communicate users and hardware and to manage the
available resources efficiently.

Hardware

Operating system

User
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What is an Operating System?

ARCOS @ UC3M6

Hardware

Operating system

System Software

Application SoftwareUser

▶Operating system: software designed
to communicate users and hardware and to manage the
available resources efficiently.
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Operating system functionalities

ARCOS @ UC3M8

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.

Hardware

User
Operating system
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Hardware

User
Operating system

Operating system functionalities

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.
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Fundamental abstractions
Processes

ARCOS @ UC3M10

▶ Processes, process table, process tree
▶ Basic image, scheduling, signals
▶ Users and group identifications
▶ User interface (shell)

https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx

Ready Running

Waiting

New process Finished
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Fundamental abstractions
Files

ARCOS @ UC3M11

▶Files and directories

▶Path, working directory and root.

▶Protection

▶File descriptors

▶Special files:
▶ I/O Devices

▶ Pipes

▶Standard input/ourput/error.

https://www.microsoft.com/resources/sharedsource/windowsacademic/curriculumresourcekit.mspx

Directorio raíz

tmp usretc

pitmia
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Operating system functionalities
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Hardware

User
Operating system

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.
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Resource management

ARCOS @ UC3M13

▶ Processing management
▶ Scheduling
▶ Priorities, multi-user

▶ Memory management
▶ Memory assignement among processes with protection and sharing.

▶ Storage management – File systems
▶ Offers an unified logical vision for users and programs that is independent of the

physical storage.

▶ Device management
▶ Hide away the hardware dependencies
▶ Provide support for concurrent accesses



Alejandro Calderón Mateos

Operating system functionalities
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Hardware

User
Operating system

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.
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User interface

ARCOS @ UC3M15

▶Programming interface:
▶System calls.

▶User interface:
▶command-line interface or CLI

▶Graphic Interface o GUI

ret = close (filedesc) ;

http://www.guidebookgallery.org/screenshots/commandprompt
http://www.guidebookgallery.org/screenshots/full
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Hardware

User
Operating system

Operating system functionalities

▶User interface
▶Resource manager:
▶CPU, memory, etc.

▶Extended machine:
▶Services, programming interface, etc.
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Virtual machines

ARCOS @ UC3M17

▶ An operating system virtualize part of the hardware 
elements; Why not virtualize all of them?

▶ IBM used this idea on their mainframes since 70s.

▶ An hipervisor virtualize the whole computer, allowing
the execution of multiple operating systems at the
same time.

▶ Virtualization:
▶ [+] offers an excelent system isolating among systems

and reduces costs thanks to the flexible resource
allocation.

▶ [-] overheads

http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html

Hardware

Hipervisor (VMM)

S.O. S.O. 

Apl. Apl.

… Mg

mt
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Virtual machines

ARCOS @ UC3M18 http://www-128.ibm.com/developerworks/library/l-linuxvirt/index.html

Different
Hardware

… same O.S.

… do not
colaborate
with the
hypervisor

Containers

Para-virtualization

Full 
virtualization

HW. emulation

… different O.S.
… colaborate
with the
hypervisorSame hardware and…
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Main features

ARCOS @ UC3M20

▶Portable

▶Adaptative

▶Multidisciplinary

▶Complex

▶Sensitive
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Portability

ARCOS @ UC3M21

Mainframe
OS/360, z/OS, …

Minicomputers y PC
Unix, MacOs, Windows, … Embedded

VxWorks, QNX, LynxOS, 
Android, iOS, 

Windows Embedded, …

Supercomputer
Unix, Linux, …
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▶Same hardware, different O.S.: IBM PC

▶Same O.S., different hardware: Unix

1) Portability

ARCOS @ UC3M22

IBM PC

DR-DOSLinux

IBM PC

Unix

CRAY-Y/MP

…

…

Portability
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2) Adaptive to changes

ARCOS @ UC3M23

▶New user requirements:
▶Voice recognition, multitouch, etc.

▶Hardware evolution:
▶Controllers for new devices
▶Multicore systems, virtualization, etc.

▶Integrate solutions for different environments:
▶Batch processing, multiprogramming, shared CPU time, etc.
▶Multiuser, cooperative work, etc.
▶Distributed systems, network services, etc.
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3) Multidisciplinary software

ARCOS @ UC3M24

▶Integrates works from different areas: 
User interface, system software, artificial intelligence, security, software 
engineering, etc.

http://work-at-home-data-entry.com/wp-content/uploads/2014/10/Work-from-home-team-group-of-workers-icon.png
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4) Complex software

ARCOS @ UC3M25

▶Many lines of code.
▶Many working groups.
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4) Complex software

ARCOS @ UC3M26 http://www.zdnet.co.uk/reviews/desktop-os/2010/11/20/a-quarter-century-of-windows-40090900/5/#top

▶Many lines of code.
▶Many working groups.
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4) Complex software

ARCOS @ UC3M27 http://www.zdnet.co.uk/reviews/desktop-os/2010/11/20/a-quarter-century-of-windows-40090900/5/#top

▶Many lines of code.
▶Many working groups.
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5) Sensitive software

ARCOS @ UC3M28

▶An error in a driver (software in charge of managing a device) may block 
the entire system.

▶ It may work with data that should be carefully treated to not expose the
information to not legitimate users nor lose them.
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Goals of an operating system design

ARCOS @ UC3M30

▶Performance and efficiency.
▶ Low overheads, efficient resource usage

▶Stability: robustness and resilence
▶ Uptime, aceptable degradationde, reliability and integrity

▶ Capacity: flexibility and compatibility
▶Security and protection

▶ Protection among users

▶ Security

▶Portability
▶Clarity
▶Extensibility

http://www.cc.gatech.edu/~pwh/
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Operating system structure

ARCOS @ UC3M32

Hardware

Kernel

Services

Shell

Users

Aplications
API

Operating 

system▶Resource management.

▶Extended machine.

▶User interface

▶Programming interface
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Operating system structure
Monolithic (macrokernel)

ARCOS @ UC3M33

▶monolothic system.
▶Unstructured.
▶Every point can access to any 

variable or fuction of other 
kernel part.

▶[I] Poor maintanability, error 
sensitive.

App App

System services

Hardware

Procedures and 

structures of the 

operating system:

User space

Kernel 

space
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Operating system structure
subsystems

ARCOS @ UC3M34

▶Monolithic system comprised by 
logic subsistems that provides 
well defined interfaces as entry 
points.

▶The subsystems groups related 
procedures and structures.

▶e.g: Linux

App App

Servicios del sistema

Hardware

Subsystem 1

User space

Kernel space

…
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Operating system structure
Layered

ARCOS @ UC3M35

▶Structured in logic layers.
▶Each layer only provide access to 

lower layers.

▶e.g:
▶THE (Dijkstra) 
▶Multics, this operating system added the 

privilege rings.

App App

System services

Hardware

User space

Kernel space

I/O device management

Scheduling and IPC

Memory management
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Operating system structure
Microkernel

ARCOS @ UC3M36

▶The main componentes are 
executed outside the kenel 
space.

▶microkernel:
▶ Scheduling and process management.

▶ Basic virtual memory management.

▶ Basic communication among processes.

▶e.g:
▶Match, QNX, Minix, L4, etc.

Memory 

server
App

Network

server

Process 

server

File 

server ...

Microkernel

Hardware

petición

respuesta

Modo Usuario

Modo Kernel
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Operating system structure
Windows 2000 (simplified)

ARCOS @ UC3M37

User

Kernel

Executive

Drivers Kernel

Win32
User 

applications
Subsytems DLLs

System 

processes and 

sevices

POSI

X
OS/2

Win32

User/GDI

Environment subsystems

Ntdll.dll

Hardware Abstraction Layer (HAL)

http://technet.microsoft.com/en-us/library/cc750820.aspx
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Example of a subsytem operating system
Linux (simplified)

ARCOS @ UC3M38

Usuario

Kernel

Núcleo

Servicios

Shell
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Real O.S.
Linux (‘less’ simplified)

http://www.makelinux.net/kernel_map.shtml ARCOS @ UC3M39
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Operating system structure

ARCOS @ UC3M41

Hardware

Kernel

Services

Shell

User

Aplications

Operating 

system

API

▶Resource management
▶Extended machine

▶User interface

▶Programming interface
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Asynchronous execution
Execution (general)

ARCOS @ UC3M42

------------------
------------------
------------------
------------------
------------------

t
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Asynchronous execution
execution (general)

ARCOS @ UC3M43

------------------
------------------
------------------
------------------
------------------ ------------------

------------------
------------------
------------------
------------------

t

hx

ex

When a new event happens 

(ex) the corresponding 

handler is executed (hx)
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Asynchronous execution
Execution (general)

ARCOS @ UC3M44

------------------
------------------
------------------
------------------
------------------

------------------
------------------
------------------
------------------
------------------

------------------
------------------
------------------
------------------
------------------

t

hx

ex

At the end of the handler 

execution, the execution is 

resumed at the point it was 

interrupted.
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Asyncrhonous execution
Source code (general)

ARCOS @ UC3M45

int main ( … )
{

…
On (event1, handler1) ;
…

}

1) Asociate handler 1 

to event 1
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Asynchronous execution
Source code (general)

ARCOS @ UC3M46

int main ( … )
{

…
On (event1, handler1) ;
…

}

void handler1 ( … )
{
}

…

2) Implement the event handler 

function

1) Asociate handler 

1 to event 1
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Asynchronous execution
Source code (general)

ARCOS @ UC3M47

2) Implement the event 

handler function

3) To communicate functions , we 

employ global variables.int global1;  
…

int main ( … )
{

…
On (event1, handler1) ;
…

}

void handler1 ( … )
{
}

…
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Example of asynchronous execution
Signals

ARCOS @ UC3M48

#include<stdio.h>
#include<signal.h>
#include<unistd.h>

void sig_handler (int signo)
{

if (signo == SIGINT)
printf("received SIGINT\n");

}

int main(void)
{

if (signal(SIGINT, sig_handler) == SIG_ERR) 
printf("\ncan't catch SIGINT\n");

sleep(60); // simula un proceso largo.

return 0;
}

signal.h

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code/
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Asynchronous execution
Simplified example

ARCOS @ UC3M49

S.O.

HW.

App.

CPU Disc
o

RAM

• char buffer[1024];
…

• read(fd,buffer)
•

Pi
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Asynchronous execution
Simplified example

ARCOS @ UC3M50

S.O.

HW.

App.

CPU Disc
o

RAM

• Ask for a block
• Run Pi +1

• char buffer[1024];
…

• read(fd,buffer)
•

Pi

syscall
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Asynchronous execution
Simplified example

ARCOS @ UC3M51

S.O.

HW.

App.

CPU Disc
o

RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall
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Asynchronous execution
Simplified exemple

ARCOS @ UC3M52

S.O.

HW.

App.

CPU Disc
o

RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall
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Asinchronous execution
Simplified example

ARCOS @ UC3M53

S.O.

HW.

App.

CPU Disc
o

RAM

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Pi +1 • int x;
…

• for (x=0; x<900; x++);
•

• Ask for a block
• Run Pi +1

syscall

hw_int
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Asinchronous execution
Simplified example

ARCOS @ UC3M54

S.O.

HW.

App.

CPU Disc RAM

hw_int

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi • char buffer[1024];
…

• read(fd,buffer)
•syscall

Pi +1 • int x;
…

• for (x=0; x<900; x++);

• Ask for a block
• Run Pi +1
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Operating system structure
Source code (general)

ARCOS @ UC3M55

int global1;  
…

int main ( … )
{

…
On (event1, handler1) ;
On (event2, handler2) ;      
On (event3, handler3) ;
…

}

void handler1 ( … ) { xxx }

…

void handler2 ( … ) { xxx }

void handler3 ( … ) {                   }i.h. 1

syscall

i.h. 2

Disc

Net

App 1

…

• Copy to
• Pu ready
• Continue Pv
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Periferal i

Hardware interrupts

ARCOS @ UC3M56

▶ Each periferal (able to generate an interrupt request) its associated to a given interrupt line or IRQ (Interrupt 
ReQuest)

▶ All lines are connected to a PIC (Programmable Interrupt Controller)
▶ Currently, modern achitectures uses APIC (Advanced Programmable Interrupt Controller)

▶ The PIC is connected to the CPU by the pending interrupt line (INT)

▶ Both PIC and CPU are connected by data bus.

Understanding the Linux kernel (2nd edition)

PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...
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Hardware interrupts

ARCOS @ UC3M57

▶ PIC monitorizes the IRQ lines waiting for a signal.

▶ When a signal arrives:
▶ Associate the corresponding IRQ to a value stored in a given PIC register (namely vector)

▶ Signals the CPU through the pending interrupt line (INT)

▶ The CPU read the vector register as an I/O port or memory address

▶ The CPU writes in the PIC control register that it already accessed the vector

▶ The PIC deactivate the pending interrupt line, clears the vector and start monitoring again…

Understanding the Linux kernel (2nd edition)

Periferal i
PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...
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Hardware interrupts

ARCOS @ UC3M58

▶ PIC may allow disable the IRQ
▶ In that case, the PIC does not signals the CPU of a given IRQ and are enqueued until they are enabled. 

▶ Disabling an interruption at the CPU level (mask/unmask) is different: the CPU ingnores the INT.

▶ Additionally, the PIC may have priority levels
▶ Each IRQ is associated with a given priority level

▶ If there are multiple IRQ, the PIC ‘processes’ those with the highest priority 

▶ If the PIC does not support priority level, it can be simulated by the operating system at software level.

Understanding the Linux kernel (2nd edition)

Periferal i
PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...
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Hardware interrupts

ARCOS @ UC3M59

▶ The CPU receives the INT request

▶ Copies the vector through the data bus and notifies the PIC (ACK)

▶ Searches in the Interrupt Descriptor Table (IDT) for the associated function handler

▶Stores the processor state at the stack, executes in privileged mode and runs the ISR
▶ Multiple ISR (do_IRQ) may share the same interrupt

▶ Multiple interrupt may share a generic handler function.

▶Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

PIC

CPU
...

Data bus

INT

IDT

IRQi_interrupt()
do_IRQ(i)

IRQ

vector

Int. i descriptor

...

Periferal i
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System call

ARCOS @ UC3M60

S.O.

HW.

App.

CPU Disc RAM

Pi • char buffer[1024];
…

• read(fd,buffer)
•syscall

• Ask for a block
• Run Pi +1
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Llamada al sistema

ARCOS @ UC3M61

▶ There exists an assembly intruction to generate an interrupt by software

▶ Searches in the Interrupt Descriptor Table (IDT) for the associated function handler

▶ Stores the processor state at the stack, executes in privileged mode and runs the ISR

▶ Multiple IST (do_IRQ) may share the same interrupt

▶ Multiple interrupt may share a generic handler function.

▶ Restore the state from the stack, and runs the RETI (goes to the previous mode and resume the execution)

CPU

Bus Datos

INT

IDT

IRQi_interrupt(
)

do_IRQ(
i)

Int. i descriptor

...
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Executables 

ARCOS @ UC3M63

▶Older kernels:
▶Included the code for

all possible devices.
▶From time to time it was necessary 

to recompile the kernel to add support for 
new devices.

▶It was distributed as a set of executables.

http://www.cc.gatech.edu/~pwh/

I/O device management

D#10D#15
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Modules 

ARCOS @ UC3M64

▶Were desinged to conditonally include device 
controllers (drivers)
▶They allow to dinamically include pre-

compiled drivers.
▶Are distributed as dynamic libraries for 

the kernel (.so/.dll).
▶A given module may be downloaded when 

the device won't be used again.

http://www.cc.gatech.edu/~pwh/

I/O device management

D#10

D#15
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Módules

ARCOS @ UC3M65

▶Most of the current operating 
systems support modules:
▶ Linux, Solaris, BSD, Windows, etc.

▶Currently, the modules are not only used for 
drivers, but also to incorporate new 
functionalities:
▶ Eg.: Linux kernel extensively uses modules for file 

systems, network protocols, system calls, etc.

http://www.cc.gatech.edu/~pwh/

App App

Kernel

F#18
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Modules
Windows 2000

ARCOS @ UC3M66
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