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Exercises, guided labs and laboratories

Exercises

✔️

Guided Labs.

✔️

Laboratories

X

ARCOS @ UC3M2
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Recommended readings

ARCOS @ UC3M3

1. Carretero 2007:
1. Cap.2

1. Tanenbaum 
2006(en):

1. Cap.1

2. Stallings 2005:
1. Parte uno (transfondo)

3. Silberschatz 2006:
1. Cap.2

Base Recommended
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To remember…

ARCOS @ UC3M4

1. To prepare and review the class explanations. 
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.
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Overview

ARCOS @ UC3M5

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities
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Overview
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▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities
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Scenarios where the O.S. is present (1/3)

ARCOS @ UC3M7

▶System boot
▶It initialize the hardware and the kernel process,

system and users in the proper order.
▶Behavior as executable application.
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Simplified example

ARCOS @ UC3M8

.O.S.
(kernel)

HW.
CPU Disc RAM

wake-up !
privilegiate 

(kernel) mode !
Setup initial 
structures
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kernel and user mode 

review

▶Privileged mode (kernel mode) 

▶Able to access to all memory space

▶Able to use all CPU resources

▶Ordinary mode (user mode) 

▶Restricted memory space 

▶Some registers or instructions are limited

ARCOS @ UC3M9

User
(level 1)

Kernel

(level 0)

▶The operating system needs, at least, two execution modes: 
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Scenarios where the O.S. is present (2/3)

ARCOS @ UC3M10

▶Event handling (Event treatments)
▶Once booted, the operating system is a passive entity
▶Process and hardware are the active entities (and they use the kernel)
▶Except at boot-time, always there is a process executing (e.g.: idle)

▶Access to O.S. services through event handling
▶Hardware interrupts
▶Software interrupts
▶Exceptions
▶System calls

▶Behavior as library.
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Simplified example

ARCOS @ UC3M11

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• char buffer[1024];
…

• read(fd,buffer)
•

Pi
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Simplified example

ARCOS @ UC3M12

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• Request block
• Execute Pi +1

syscall

Pi • char buffer[1024];
…

• read(fd,buffer)
•
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Simplified example

ARCOS @ UC3M13

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• Request block
• Execute Pi +1

hw int.

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi

syscall

• char buffer[1024];
…

• read(fd,buffer)
•
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Scenarios where the O.S. is present (3/3)

ARCOS @ UC3M14

▶Kernel process
▶It performs tasks related to the operating system that

are better developed in the context of a independent process.
▶Behavior as proprietary process, for special tasks.
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Simplified example

ARCOS @ UC3M15

.O.S.
(kernel)

HW.
CPU Disc RAM

while (true) {
• sleep(1);
• If (idle > 20m)

issue sleep to disk
}
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Scenarios where the O.S. is present 
summary

ARCOS @ UC3M16

▶ System boot
▶ Perform initialization tasks for hardware, kernel, and processes in the proper order.
▶ Run as executable program.

▶ Event handling (treatment) 
▶ After booting, the operating system is a passive entity.

▶Processes and hardware are active entities (they use the kernel)
▶Except at the beginning, there is always a process running (idle)

▶ Access to the services of the .O.S.
▶Hardware Int, Software Int, Exceptions, and System calls

▶ As library.

▶ Kernel process
▶ Performs operating system tasks that are best done in the context of an independent process
▶ As priority processes, for special tasks.
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Overview

ARCOS @ UC3M17

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities
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Boot process

● The Reset loads the initial values in the CPU registers
● PC ← Boot address of the ROM loader 

(FFFF:0000)

ARCOS @ UC3M18 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

…

PC
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Boot process

● The boot loader ROM is executed
● Power-On Self Test (POST)
● Master Boot Record is loaded into memory (0000:7C00)

ARCOS @ UC3M19 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

…

PC
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Boot process

● The boot loader ROM is executed
● Power-On Self Test (POST)
● Master Boot Record is loaded into memory (0000:7C00)

ARCOS @ UC3M20

ROM

MBR

…

http://www.ibm.com/developerworks/linux/library/l-linuxboot/

PC
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Boot process

● The Master Boot Record is executed
● (It is the first part of the O.S. loader)
● It searches for an active partition in the partition table
● It loads the Boot Record into memory from this partition

ARCOS @ UC3M21 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL

…

PC
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Boot process

● The Boot Loader is executed
● (It is the second part of the O.S. loader)
● It might show some boot option list…
● The boot loader loads into memory the resident part of the 

operating system (kernel and modules)

ARCOS @ UC3M22 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest 
of OS

…

PC
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Boot process

● The kernel initialization is performed (1/2)
● Hardware initialization
● Check errors in file systems
● Establishes the initial internal structures of the O.S.
● Switch to protected mode

ARCOS @ UC3M23 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest 
of OS

…

PC
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Boot process

● The kernel initialization is performed (2/2)
● The rest of the .O.S is set in protected mode
● The initial processes are built

● Kernel process, system services and terminals (login)

ARCOS @ UC3M24 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest 
of OS

…

PC
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Boot process
summary

ARCOS @ UC3M25 http://duartes.org/gustavo/blog/post/how-computers-boot-up

PC
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Example of boot sequence

▶GNU-Linux
ARCOS @ UC3M26
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GNU-Linux     

ARCOS @ UC3M27

PC

http://www.ibm.com/developerworks/linux/library/l-linuxboot/
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GNU-Linux

ARCOS @ UC3M28

• LILO (Linux Loader) or GRUB (Grand Unified Bootloader). 

• It shows an option menu (/etc/grub.conf)
• The kernel image is loaded into memory (vmlinuz) and it is executed with the 

parameters of the selected menu option.
• It is also possible to “chain” the bootloader (with other one). 

PC

http://funnix.net/wp-content/uploads/2012/07/grub.jpg

grub> set root=(hd0)/boot
grub> insmod linux
grub> linux  /bzImage-2.6.14.2
grub> initrd /initrd-2.6.14.2.img
grub> boot
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GNU-Linux

ARCOS @ UC3M29

• The kernel is executed (vmlinuz): base
• If needed, the kernel is uncompressed 
• The hardware plug-and-play is done (and the associated kernel drivers are initialized)

http://gxemul.sourceforge.net/gxemul-stable/doc/debian-1.png

PC
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GNU-Linux

ARCOS @ UC3M30

• The kernel is executed (initrd): modules
• initrd is the initial system with the necessary drivers to fully boot.
• The shell-script /linuxrc is executed

• It initializes the drivers with the associated configuration.

• The initrd use to ‘pivot’ to the planned root system: 
• Itself (embedded systems), partition in the hard disk, NFS, etc.

http://milindchoudhary.wordpress.com/2009/03/30/linux-boot-process/

PC
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GNU-Linux     

ARCOS @ UC3M31 http://www.ibm.com/developerworks/linux/library/l-linuxboot/

PC

• The init process is executed 
• The init process (pid 1) boots all system process…
• … and the terminal process (login o xlogin) in order user could authenticate.
• It goes sleep waiting for the arrival of events (cpu_idle) 
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Speed-up the Linux boot

▶Asynchronous hardware initialization

▶Asynchronous initialization of services

ARCOS @ UC3M32 http://www.digitaltrends, http://lwn.net/Articles/299483, https://es.wikipedia.org/wiki/Systemd
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Speed-up the “Windows 8" boot

ARCOS @ UC3M33 http://www.digitaltrends.com/computing/windows-8-boot-time-scaled-down-to-eight-seconds/

POST/Pre-boot

POST/Pre-boot
Hiberfile

Read
Driver

Init
User 

Session Init

System Initialization  (drivers, services, session 0)
User 

Session Init

Desktop ReadyWinlogon

Desktop ReadyWinlogon

C
o

ld
 

B
o

o
t

W
in

d
o

w
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8
 

fa
st

 
st

ar
tu

p

Boot 
menu

Boot 
menu
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MBR → GPT

ARCOS @ UC3M34 http://www.it-support-singapore.com/wp-content/uploads/2012/08/differenace-MBR-GPT1.jpg

Master Boot Record

• 4 primary part. 
3P. + 1E. (+n U.L.)

• 32 bits
• 2 TB/part.

232*512 bytes/sector

• BIOS
• Old O.S.
• 1 MBR + 

no CRC32

GUID Partition Table

• 128 part.
128 in several O.S.

• 64 bits
• 9 ZB/part.

264*512 bytes/sector

• UEFI
• New S.O.
• 2 GPT +

CRC32
more secure
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BIOS → UEFI

ARCOS @ UC3M35 http://answers.microsoft.com/en-us/windows/forum/windows8_1-security/uefi-secure-boot-in-windows-81/65d74e19-9572-4a91-85aa-57fa783f0759
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GPT + UEFI
Example of mandatory partitions with dual-boot 

ARCOS @ UC3M36 http://askubuntu.com/questions/350352/making-windows-8-partition-larger

EFI
W-recovery
W-MSR
W-system
L-system
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Overview

ARCOS @ UC3M37

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3
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Event types

ARCOS @ UC3M38

▶System calls
▶Event for requesting an operating system service

▶Exceptions
▶Exceptional events while executing an instruction

▶Software interrupts
▶Deferred event as part of a pending event treatment 

▶Hardware interrupts
▶Events that come from hardware.

Hardware

User
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Event types
System calls

ARCOS @ UC3M39

▶Event for requesting an O.S. 
service.

▶User programs access to O.S. 
services through system calls.

▶They are seen by 
programmers as function calls.

Operating System

Hardware

Application

• …
• m=read(fd,buff,n);
• …
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Event types
Hardware interrupts

ARCOS @ UC3M40

▶Events that come from hardware.

▶The O.S. has to attend to 
something that the hardware 
needs (data arrival, exceptional 
situation, etc.)

▶It requires a set of subroutines 
associated with each event that 
the hardware can request.

Operating System

Hardware

Application
• …
• …
• …

• …
• …
• …
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Event types
Exceptions

ARCOS @ UC3M41

▶Exceptional events while executing 
an instruction.

▶They can be problems (division by 
zero, illegal instruction, segment 
violation, etc.) or warnings (page 
failure, etc.)
▶~ Hardware interruption

generated by the CPU itself.

▶It requires a set of subroutines 
associated with each exception that 
may occur.

Operating System

Hardware

Application

• …
• x = y = 0;
• r = x/y;  
• …
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Event types
Software interrupts

ARCOS @ UC3M42

▶Event to deferre the non-
critical part of the event 
treatment.

▶Part of the event treatment is 
deferred:
▶To wait better opportunity.
▶Treated most urgent events first.

Operating System

Hardware

Application

• …
• …
• …



Alejandro Calderón Mateos

Metaphor: the book store...

ARCOS @ UC3M43

▶Hardware devices 
providers.

▶Computer
the book store.

▶CPU and RAM
seller and shelves.

▶Operating System
Instruction book the seller follows.

▶Process
Buyers.
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Metaphor: the book store...
System call

ARCOS @ UC3M44

▶Buyer want to buy a book
▶The process issues a system call

▶Seller request the book to the associated 
provider (because out of stock)

▶The O.S. issues a disk request for a data 
block

▶Seller puts the buyer on hold until he has 
the book to attend to other situations

▶The O.S. block the process and execute 
another process or pending tasks
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Metaphor: the book store...
System call

ARCOS @ UC3M45

▶Buyer want to buy a book
▶The process issues a system call

▶Seller request the book to the associated 
provider (because out of stock)

▶The O.S. issues a disk request for a data 
block

▶Seller puts the buyer on hold until he has 
the book to attend to other situations

▶The O.S. block the process and execute 
another process or pending tasks
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Metaphor: the book store...
Hardware interrupt

ARCOS @ UC3M46

▶The provider notifies by phone that he/she 
is at the door and he/she needs urgent 
attention (because he/she double parked)

▶Hard disk fire a hardware interrupt

▶Seller put the book boxes into a temporary 
shelf, along with a post-it that labels it as 
'todo: to deliver'

▶The O.S. copies the disk block into 
memory and activates a software interrupt
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Metaphor: the book store...
Software interrupt

ARCOS @ UC3M47
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▶When no other priority task is pending, the 
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered, 
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”, 
and when it is executed it will copy the 
data
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Metaphor: the book store...
Software interrupt

ARCOS @ UC3M48

▶When no other priority task is pending, the 
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered, 
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”, 
and when it is executed it will copy the 
data
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Metaphor: the book store...
Software interrupt

ARCOS @ UC3M49

▶When no other priority task is pending, the 
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered, 
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”, 
and when it is executed it will copy the 
data
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Metaphor: the book store...
Exception

ARCOS @ UC3M50

▶If a buyer ask for a coffee, is invited to 
leave the bookstore (and go to a cafeteria). 
Then, seller continues serving clients.

▶An exception occurs while a process is 
running, the process is killed

▶If the cash register is broken, then the 
bookstore must be closed

▶A serious exception occurs while running 
the operating system, kernel-panic and 
stops
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Simplified example

ARCOS @ UC3M51

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’; 
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Simplified example

ARCOS @ UC3M52

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’; 
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Simplified example

ARCOS @ UC3M53

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’; 
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Simplified example

ARCOS @ UC3M54

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

sw int.
• Pi ready

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’; 
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Simplified example

ARCOS @ UC3M55

.O.S.
(kernel)

HW.

App.
• char buffer[1024];

…

• read(fd,buffer)
• buffer[2048]=‘\0’; syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

sw int.
• Pi ready

excep.

• SIGSEGV



Alejandro Calderón Mateos

Overview

ARCOS @ UC3M56

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3
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Classification of events

ARCOS @ UC3M57

Synchronous Asynchronous

Hardware

Software
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Classification of events

ARCOS @ UC3M58

Synchronous Asynchronous

Hardware Exceptions Hardware interrupts

Software System calls Software interrupts

▶ Generated by software o hardware:
▶ Generated by hardware 

▶Hardware provides the request and the associated vector

▶ Generated by software
▶An assembly instruction provides the request and the associated vector



Alejandro Calderón Mateos

Classification of events

ARCOS @ UC3M59

Synchronous Asynchronous

Hardware Exceptions Hardware interrupts

Software System calls Software interrupts

▶ Synchronous and asynchronous events:
▶ Synchronous events

▶ It activation is predictable, and related to the actual process’ code 

▶ Executed in the context of the “requested” process

▶ Asynchronous events 
▶ It activation is unpredictable, and related to any (or none) process

▶ Executed in the context of of a process not related with the interrupt
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Basic characteristics…

ARCOS @ UC3M60

Previous execution mode Generated by

Hardware interrupts

Exceptions

System calls

Software interrupts
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Basic characteristics…

ARCOS @ UC3M61

Previous execution mode Generated by

Hardware interrupts
• It can be User or System

• NO, it doesn’t influences in treatment
• I/O Devices 
• Interrupts among CPUs (IPI)

Exceptions
• It can be User or System

• YES. it influences in the treatment

• CPU itself  (~hw int.. from CPU)

• Usually programming errors,  
NO always (page faults, debugging, etc.)

System calls • Always User • Applications 

Software interrupts • Always System • Because the treatment of all other events: 
used by the non-critical parts
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Relationship between events

ARCOS @ UC3M62

▶ Components that treats synchronous events
▶ More related with process

▶ Components that treats asynchronous events
▶ More related with Devices

▶ There are tasks that involves both event types.
▶ E.g.:  access to a disk (system call + disk interrupt)

unblocking 

interrupt

Dev. MDev. 1
…

Proc. N
Block system 

call

Proc. 1

Systemcall

…

Upper layer

Lower layer

Dev. 2

Proc. 2

exception

Interrupt

Dev. 3

Proc. 3
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Overview

ARCOS @ UC3M63

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3
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Event management

ARCOS @ UC3M64

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)
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Event management

ARCOS @ UC3M65

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)

▶All events are treated in a similar way (~hw int..)

▶ It has been introduced its event management
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Event management

ARCOS @ UC3M66

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)

▶All events are treated in a similar way (~hw int..)

▶ It has been introduced its event management

▶ It is saved the state in the system stack

▶ Usually the PC and SR (state) registers
▶ CPU switch into privilegiate mode and jump into the assoc. treatment subroutine

▶ Save extra registers if necessary 

▶ The event handler subroutine treats the event

▶ Restore extra registers saved if necessary
▶ The event handler subroutine ends: RETI

▶ Restore the saved state and PC and restore the previous mode

kernel

Services

App

Hardware



Alejandro Calderón Mateos

Event management

▶ The event is handled in the context of the active process.

▶ Current active process memory map is used, even though is not 
related with the event handled.

▶ The system uses to independent stacks:

◻ User stack (user mode) or System Stack (system)

ARCOS @ UC3M67

kernel

Services

App

Hardware

▶Detail 1 > During the boot sequence, no event is handled
▶ System mode, disabled interrupts, and inactive MMU 

▶Detail 2 > Cuando ocurre un evento, entra el S.O para tratarlo:
▶ There is a mode switching (into privilegiate mode)

▶ but is not mandatory to perform a context switching

▶Detail 3 > An event could be ‘fired’ while treating other event
▶ prioritary event -> push current in a stack and treat the new one; 

otherwise -> wait to end the current treatment to perform the new event’s treatment
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Event management

ARCOS @ UC3M68

▶Hardware interrupts:
▶ General treatment 
▶ Examples: W & L

▶Exception:
▶ General treatment 

▶System calls:
▶ General treatment 
▶ Examples: W & L

▶Software interrupts:
▶ General treatment 
▶ Examples: W & L
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Hardware interrupts
characteristics

ARCOS @ UC3M69

▶Asynchronous events that comes from the hardware to 
notify C.P.U. to handle it

▶Previous execution mode: 
▶It could be user or system (it does not influences the 

treatment)

▶ Generated by:
▶I/O devices
▶System critical conditions (e.g.: power shortage)
▶Inter-processor Interrupts (IPI)
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Hardware interrupts
treatment (1/5)

ARCOS @ UC3M70

User Mode

Kernel Mode

IDT Handler of 
device X

int main (int argc, char **argv)
{

…
/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA,   hnd_exceptionAritmetica); 
instal_man_int(EXC_MEMORIA,      hnd_exceptionMemory); 
instal_man_int(INT_RELOJ,               hnd_interruptClock); 
instal_man_int(INT_DeviceS, hnd_interruptDevices); 
instal_man_int(LLAM_SISTEMA,       hnd_SystemCall); 
instal_man_int(INT_SW,                     hnd_softwareInterrupt);
…
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Hardware interrupts
treatment (2/5)

ARCOS @ UC3M71

User Mode

Kernel Mode

IDT

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application

Handler of 
device X
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Hardware interrupts
treatment (3/5)

ARCOS @ UC3M72

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

▶ First, save basic state (PC, RE, SP) on system stack 

▶ CPU switch into privilegiate mode and jump to the associated treatment routine

Handler of 
device X

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application
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Hardware interrupts
treatment (4/5)

ARCOS @ UC3M73

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void interrupcionDevice ()

{

▶ Salvar estado (si es necesario)
▶ La subrutina trata el evento:

▶ Realiza lo urgente
▶ Programa una tarea pendiente 

(si necesario)
▶ Restaura el estado (si necesario)
▶ Execute instrucción de retorno de interrupción (RETI)

▶ Restaura estado básico y modo.
}

Handler of 
device X
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Hardware interrupts
treatment (5/5)

ARCOS @ UC3M74

User Mode

Kernel Mode

IDT

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application

Handler of 
device X



Alejandro Calderón Mateos

Hardware interrupts
treatment in Windows

ARCOS @ UC3M75

Avisa perif. retire IRQ

Aquí: mínimo del servicio:
Perif:  Estado?, 

siguiente operación 

Call DPC→ grueso del servicio

Retorno  

Inhibe las Interrupciones

Salva el estado de la ejecución

Inhibe el nivel IRQL atendido y 

los inferiores

Localiza e invoca la 

correspondiente ISR [RTI]

Retira la interrupción

Restaura el estado de la 

máquina

Interrupt Dispatch Routine

Interrupt Service Routine

Kernel

Interrupt!

User/kernel 

Inside Windows 2000 (página 104)

High
Power Fail

Inter-processor Interrupt
Clock

Dispatch/DPC

Device n

Device 1

APC
Passive

...

31
30
29
28

0
1
2

Hardware 

Interrupts

Software 

Interrupts

Normal Thread Execution
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Hardware interrupts
treatment in Linux

ARCOS @ UC3M76 http://chxxxyg.blog.163.com/blog/static/1502811932010627015098/
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Exceptions
characteristics

ARCOS @ UC3M77

▶Synchronous events, exceptional ones while 
executing an instruction

▶Previous execution mode: 
▶It could be user or system (YES, it influences the treatment)

▶ Generated by:
▶Usually by hardware (usually errors) 
▶But not always are errors (e.g.: page fault, debugging, etc.)



Alejandro Calderón Mateos

int main (int argc, char **argv)
{

…
/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA,   hnd_exceptionAritmetica); 
instal_man_int(EXC_MEMORIA,      hnd_exceptionMemory); 
instal_man_int(INT_RELOJ,               hnd_interruptClock); 
instal_man_int(INT_DeviceS, hnd_interruptDevices); 
instal_man_int(LLAM_SISTEMA,       hnd_SystemCall); 
instal_man_int(INT_SW,                     hnd_softwareInterrupt);
…

Exceptions
treatment (1/4)

ARCOS @ UC3M78

User Mode

Kernel Mode

Arithmetic exception 
Handler 

IDT
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Exceptions
treatment (2/4)

ARCOS @ UC3M79

#include "services.h"

int main () {
double result;

result = 0 / 0;

printf(“result = %d\n“,result);

return 0;
}

User Mode

Kernel Mode

Application

Arithmetic exception 
Handler 

IDT



Alejandro Calderón Mateos

Exceptions
treatment (3/4)

ARCOS @ UC3M80

#include "services.h"

int main () {
double result;

result = 0 / 0;

printf(“result = %d\n“,result);

return 0;
}

User Mode

Kernel Mode

Application

IDT

exception

CPU

Arithmetic exception 
Handler 

▶ First, save basic state (PC, RE, SP) on system stack 

▶ CPU switch into privilegiate mode and jump to the associated treatment routine



Alejandro Calderón Mateos

Exceptions
treatment (4/4)

ARCOS @ UC3M81

User Mode

Kernel Mode

Application

IDT
Arithmetic exception 

Handler 
exception

CPU

● Si es un error:
● Si el nivel previo de la CPU era de sistema:

● Pánico:  error en el código del .O.S. => mensaje + detener el .O.S.

● Si el nivel previo de la CPU era de User:
● Si está siendo depurado, se notifica a depurador

● Si el programa establece un Handler of la exception, ejecutarlo

● En caso contrario, se aborta el proceso 

● Si NO es un error: (Ej.: fallo de página previsto)
● Se realiza la tarea prevista (Ej.: asignar una nueva página)

Da igual el nivel previo de ejecución
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System calls
characteristics

ARCOS @ UC3M82

▶Synchronous events for requesting O.S. services 
with an unprivileged instruction

▶Previous execution mode: 
▶User mode always

▶ Generated by:
▶By applications
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System calls
treatment

ARCOS @ UC3M83

int main (int argc, char **argv)
{

…

/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA,   hnd_exceptionAritmetica); 
instal_man_int(EXC_MEMORIA,        hnd_exceptionMemory); 
instal_man_int(INT_RELOJ,               hnd_interruptClock); 
instal_man_int(INT_DeviceS,             hnd_interruptDevices); 
instal_man_int(LLAM_SISTEMA,       hnd_SystemCall); 
instal_man_int(INT_SW,                     hnd_softwareInterrupt);

…
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System calls
treatment (1/9)

ARCOS @ UC3M84

#include "services.h"

int main () {

if (crear_proceso("excep_arit")<0)
printf("Error creando excep_arit\n");

function_XXXXX(…)

return 0;
}

User/Application-01.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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System calls
treatment (2/9)

ARCOS @ UC3M85

…
int crear_proceso (char *prog) ;
int terminar_proceso () ;
int function_XXXXX(.. args..) ;
…

User/services.h

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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System calls
treatment (3/9)

ARCOS @ UC3M86

…
int terminar_proceso () {

return llamsis(TERMINAR_PROCESO, 0);
}

int function_XXXXX(.. args..) {
return llamsis(FUNCION_XXXXX , ...);

}
…

User/Services.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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int llamsis (int Systemcall, int nargs,…//args) {
int i;

write_register(0, Systemcall);
for (i=1; nargs; nargs--, i++)

write_register(i, args[i]);
trap(); // genera int.
return read_register(0);

}
…

System calls
treatment (4/9)

ARCOS @ UC3M87

User/krn.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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int llamsis (int Systemcall, int nargs,…//args) {
int i;

write_register(0, Systemcall);
for (i=1; nargs; nargs--, i++)

write_register(i, args[i]);
trap(); // genera int.
return read_register(0);

}
…

System calls
treatment (5/9)

ARCOS @ UC3M88

User/krn.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Int.

CPU

▶ First, save basic state (PC, RE, SP) on system stack 

▶ CPU switch into privilegiate mode and jump to the associated treatment routine
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System calls
treatment (6/9)

ARCOS @ UC3M89

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

void hnd_SystemCall()
{

int serviceId, ret;

serviceId=read_register(0);
if (serviceId < NUMERO_Services)

ret=(tableServices[serviceId].funService)();
else ret=-1; /* non-available service*/
write_register(0,ret);

}

nucleo/Services.c

IDT

Int.

CPU
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#define NUMERO_Services 14

#define CREAR_PROCESO 0

#define TERMINAR_PROCESO 1

#define ABRIR 2

…

#define FUNCION_XXXXX 13

System calls
treatment (7/9)

ARCOS @ UC3M90

nucleo/services.h

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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...

servicio tableServices [NUMERO_Services] = {

{sis_crearProceso},

{sis_terminarProceso},

…

{sis_function_XXXXX} 

} ;

System calls
treatment (8/9)

ARCOS @ UC3M91

nucleo/Services.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT
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int sis_terminarProceso()

{

printk("-> FIN PROCESO %d\n", procesoActual->id);

liberarProceso();

return (0); /* no debería llegar aquí… */

}

int sis_function_XXXXX(){

…

}
…

System calls
treatment (9/9)

ARCOS @ UC3M92

nucleo/servicio_xxxxx.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT



Alejandro Calderón Mateos

System calls
treatment in Linux (1/7)

ARCOS @ UC3M93

void __init trap_init(void)
{

…
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate(X86_TRAP_NP, segment_not_present);
set_intr_gate(X86_TRAP_GP, general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, coprocessor_error);
set_intr_gate(X86_TRAP_AC, alignment_check);

#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);

#endif

#ifdef CONFIG_X86_32
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
set_bit(SYSCALL_VECTOR, used_vectors);

#endif
…

/usr/src/linux/arch/x86/kernel/traps.c
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System calls
treatment in Linux (2/7)

ARCOS @ UC3M94

#include <stdio.h>

int main (int argc, char *argv[])
{

char *src=”testing the system call”;
char dest[40];
int ret;

ret = syscall(222,dest,src);
printf("copied string: %s\ncode: %d\n",dest,ret) ;

}

/usr/src/linux/test/test1.c

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Linux (3/7)

ARCOS @ UC3M95

…
int syscall ( … )
{

MOVE %eax, 222
MOVE %ebx, argv-1
MOVE %ecx, argv-2
sysenter
%eax = valor devuelto
RET

}

/usr/src/libc/…

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Linux (3/7)

ARCOS @ UC3M96

…
int syscall ( … )
{

MOVE %eax, 222
MOVE %ebx, argv-1
MOVE %ecx, argv-2
sysenter
%eax = valor devuelto
RET

}

/usr/src/libc/…

sis_222

User Mode

Kernel Mode

Application

libc.so

IDT

_sys_call_table

_system_call( )

Int.

CPU
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System calls
treatment in Linux (4/7)

ARCOS @ UC3M97

ENTRY( system_call )
• Salva estado

• En pila de sistema
• Comprueba los parámetros de Systemcall

• Linux: registros, Windows: pila
• sys_call_table(%eax)
• ret_from_sys_call

• Restaura estado
• Replanificación

/usr/src/linux/arch/x86/kernel/entry_32.S

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Linux (5/7)

ARCOS @ UC3M98

…
220  i386   getdents64  sys_getdents64  compat_sys_getdents64
221  i386   fcntl64         sys_fcntl64         compat_sys_fcntl64
222  i386   kstrcpy        sys_kstrcpy
# 223 is unused
224 i386    gettid           sys_gettid
225 i386    readahead   sys_readahead   sys32_readahead
226 i386    setxattr        sys_setxattr
…

/usr/src/linux/arch/x86/syscalls/syscall_32.tbl 

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Linux (6/7)

ARCOS @ UC3M99

…
539  x32   process_vm_readv   compat_sys_process_vm_readv
540  x32   process_vm_writev   compat_sys_process_vm_writev
541  x32   setsockopt                compat_sys_setsockopt
542  x32   getsockopt                compat_sys_getsockopt

543  x32   kstrcpy                      sys_kstrcpy
…

/usr/src/linux/arch/x86/syscalls/syscall_64.tbl 

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Linux (7/7)

ARCOS @ UC3M100

…
SYSCALL_DEFINE2(kstrcpy, char *, dst, char *, src)
{

int i=0; char c;

do { get_user(c, src+i); put_user(c, dest+i); i++;  } while (c != 0);

printk ("++ kstrcpy: done\n");
return 1;

}

/usr/src/linux/kernel/sys.c

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call( )

Application
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System calls
treatment in Windows

ARCOS @ UC3M101

Application

Kernel32.dll

Ntdll.dll

NtCreateFile

NtReadFile

NtClose

SSDTabl
e

User Mode

Kernel Mode
System
Service
Dispatcher (SSD)
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Software interrupt
characteristics

ARCOS @ UC3M102

▶Asynchronous events to deferre the non-critical part 
of the event treatment 
▶ To wait better opportunity.
▶ Treated the critical parts first.

▶Previous execution mode: 
▶ Always system mode

▶ Generated by:
▶In the event treatment of all former events, 

software interrupts is used for the non-critical parts
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Software interrupt
treatment

ARCOS @ UC3M103

int main (int argc, char **argv)
{

…

/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA,   hnd_exceptionAritmetica) ;
instal_man_int(EXC_MEMORIA,        hnd_exceptionMemory) ;
instal_man_int(INT_RELOJ,               hnd_interruptClock) ;
instal_man_int(INT_DeviceS,             hnd_interruptDevices) ;
instal_man_int(LLAM_SISTEMA,       hnd_SystemCall) ;
instal_man_int(INT_SW,                     hnd_softwareInterrupt) ;

…
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Interrupt Service Routine 
for keyboard

Interrupción hardware
treatment (1/2)

ARCOS @ UC3M104

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard ( idDevice )
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks, 

Int_software_Keyboard);
• activate_int_SW();

}
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Interrupt Service Routine 
for keyboard

Interrupción hardware
treatment (1/2)

ARCOS @ UC3M105

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard ( idDevice )
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks, 

Int_software_Keyboard);
• activate_int_SW();

}
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Software interrupt
treatment (1/2)

ARCOS @ UC3M106

User Mode

Kernel Mode

Interrupt Service Routine 
for keyboard

Interrupt with minimal priority: it will be executed 
when no more critical task are present

void Int_software_Keyboard ( idDevice )
{

• get “DataKeyboard” from “idDevice” 
• P = ExtractBCP(&(DataKeyboard.waiting))
• IF P != NULL

• P.state = READY
• Insert(&ReadyList, P);

}
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Interrupt Service Routine 
for keyboard

Interrupción hardware
treatment (2/2)

ARCOS @ UC3M107

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard ( idDevice )
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks, 

Int_software_Keyboard);
• activate_int_SW();

}
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Software interrupt
treatment (2/2)

ARCOS @ UC3M108

User Mode

Kernel Mode

IDT

Interrupt Service Routine 
for keyboard

void hnd_softwareInterrupt ()    /*  treatment of software interrupts */
{

void (*function)(void *);
void *Data = NULL;

mientras ( thereArePendTasks(listPendTasks) ) 
{

extractFirstPendTask(&(listPendTasks), &(function), &(Data));
function(Data);

}

“deactivate_int_software();”
}

Interrupt with minimal priority: it will be executed 
when no more critical task are present
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Software interrupt
types of treatment in Linux

ARCOS @ UC3M109

▶ Bottom-Halves (BH):
▶ It was the first implementation of soft.int. in Linux. (removed in k2.6.x)
▶ They are always executed in serie (no matters the number of CPUs).

There are only 32 handlers (previously registered).

▶ Softirqs:
▶ Softirq of the same type can be run in parallel on different CPUs.

There are only 32 handlers (previously registered).
▶ For example, system timer uses softirqs.

▶ Tasklets
▶ Similar to softirqs except that there is no limit, and easier to use (for programming).
▶ All the tasklets are tunneled through a softirq, so same tasklet can not be run at the same time on several CPUs.

▶ Work queues
▶ The top-half is said to be executed in the context of an interrupt => it is not associated with a process.

Without such association the code can not “go sleep” or be blocked.
▶ Work queues are executed in the context of a process and have skills of a kernel thread.

They have a set of useful functions for creation, planning, etc.

http://www.ibm.com/developerworks/linux/library/l-tasklets/index.html
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Software interrupt
types of treatment in Windows

ARCOS @ UC3M110

▶Deferral Procedure Calls (DPCs):
▶ Common to the entire operating system (a single queue per CPU)
▶ They perform deferred tasks that have been enqueued:

▶ To complete I/O operations of the controllers.
▶ Processing timers expiration.
▶ Release of waiting threads.
▶ Force re-scheduling when a slice of time expires.

▶ Asynchronous Procedure Calls (APCs):
▶ Individuals to each thread (each thread has its own queue).

▶ The thread must give its permission for its APC to run.

▶ They can be executed from system mode or user mode.
▶ System: allows operating system code to be executed in the context of a thread.
▶ User: used by some I/O APIs on Win32
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Software interrupt
types of treatment in Windows: DPC

ARCOS @ UC3M111

User

Kernel

DPC

DPC

DPC

DPCs queue objects (e.g., code to be executed):  one per processor:

IDT

dispatch/DPC
APC

Dispatcher

IRQL level go down to a lower 

level that the DPCs level

When the queue is empty

→ IRQL level go down
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Overview

ARCOS @ UC3M112

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Clock Interrupt Disk Interrupt

System Call Page Fault

Process Table

Disk Queue

Envelope
Memory 

Management

Scheduler

Disk Driver
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Scenarios where the O.S. is present

ARCOS @ UC3M113

▶System boot

▶Events treatment
▶ Hardware interrupts

▶ Exceptions

▶ System calls

▶ Software interrupts

▶Kernel process
▶ It will do Operating System tasks that are better performed within the context of an  

independent process
▶ E.g.: they can perform blocking requests

▶ Compiten con el resto de procesos por la CPU 
▶ The scheduler use to give more priority to them



Alejandro Calderón Mateos

Different kinds of process

ARCOS @ UC3M114

▶User process
▶ With non-administrator (user) permissions (e.g.: no root user)

▶ Only executes in privilege mode if:
▶ It needs to resolve a system call it invokes (fork, exit, etc.)

▶ It needs to treat an exception that the process itself has fired (0/0, *(p=null), etc.)

▶ It needs to treat an interrupt that occurs while this process was executing (TCPpk, …)

▶System process
▶ With the administrator (user) permissions (e.g.: root user)

▶ It executes in privilege mode as an user process

▶Kernel process
▶ Belong to the kernel (it does not belong to any user)

▶ It always be executed in privilege mode
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Kernel process
Example in Linux

ARCOS @ UC3M115

▶kworker, ksoftirqd, irq, rcuob, rcuos, watchdog, …

http://www2.comp.ufscar.br/lxr/source/Documentation/kernel-per-CPU-kthreads.txt

PID USUARIO   PR  NI    VIRT    RES    SHR S  %CPU %MEM     HORA+ ORDEN     
1 root      20   0   34100   3484   1500 S   0,0  0,0   0:00.98 init      
2 root      20   0       0      0      0 S   0,0  0,0   0:00.00 kthreadd  
3 root      20   0       0      0      0 S   0,0  0,0   0:00.12 ksoftirqd/0
5 root       0 -20       0      0      0 S   0,0  0,0   0:00.00 kworker/0:0H
7 root      20   0       0      0      0 S   0,0  0,0   0:14.27 rcu_sched 
8 root      20   0       0      0      0 S   0,0  0,0   0:08.35 rcuos/0   
9 root      20   0       0      0      0 S   0,0  0,0   0:05.92 rcuos/1   
10 root      20   0       0      0      0 S   0,0  0,0   0:06.10 rcuos/2   
11 root      20   0       0      0      0 S   0,0  0,0   0:06.28 rcuos/3   
12 root      20   0       0      0      0 S   0,0  0,0   0:00.00 rcu_bh    
13 root      20   0       0      0      0 S   0,0  0,0   0:00.00 rcuob/0   
14 root      20   0       0      0      0 S   0,0  0,0   0:00.00 rcuob/1   
15 root      20   0       0      0      0 S   0,0  0,0   0:00.00 rcuob/2   
16 root      20   0       0      0      0 S   0,0  0,0   0:00.00 rcuob/3   
17 root      rt   0       0      0      0 S   0,0  0,0   0:00.29 migration/0
18 root      rt   0       0      0      0 S   0,0  0,0   0:00.10 watchdog/0
19 root      rt   0       0      0      0 S   0,0  0,0   0:00.10 watchdog/1
20 root      rt   0       0      0      0 S   0,0  0,0   0:00.19 migration/1
21 root      20   0       0      0      0 S   0,0  0,0   0:00.32 ksoftirqd/1
22 root      20   0       0      0      0 S   0,0  0,0   0:00.00 kworker/1:0
23 root       0 -20       0      0      0 S   0,0  0,0   0:00.00 kworker/1:0H
24 root      rt   0       0      0      0 S   0,0  0,0   0:00.09 watchdog/2
25 root      rt   0       0      0      0 S   0,0  0,0   0:00.25 migration/2 
... 
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Concurrence in multiprocessors 

ARCOS @ UC3M117

▶UP:  Uni-Processing.
▶ Operating System and applications are executed only in one CPU.

▶ Simple but worst performance.

▶ASMP:  Asymmetric MultiProcessing.
▶ Operating System is executed in one CPU (not all CPU are able to execute the O.S.).

▶ Simple but performance could be improved.

▶SMP:  Symmetric MultiProcessing.
▶ Operating System can be executed in any CPU.

▶ Difficult because synchronization mechanism are needed in order to protect the critical 
sections.
E.g.: lock the interruptions is not enough to stop O.S. executing in other CPU.
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Example of basic mechanisms…
Linux

ARCOS @ UC3M118

Technique Scope Skel. example

Disable Interrupts • One CPU only
unsigned long flags;
local_irq_save(flags);
/* ... SC: sección crítica ... */
local_irq_restore(flags);

Spin Locks

• All CPU

• Busy wait:

• NOT sleep, sched., etc. on C.S.

#include <linux/spinlock.h>
spinlock_t l1 = SPIN_LOCK_UNLOCKED;
spin_lock(&l1);
/* ... SC: sección crítica ... */
spin_unlock(&l1);

Mutex

• All CPU
• Blocking wait:

• NOT used on HW. int.

#include <linux/mutex.h>
static DEFINE_MUTEX(m1);
mutex_lock(&m1);
/* ... SC: sección crítica ... */
mutex_unlock(&m1);

Atomic Operations • All CPU
atomic_t a1 = ATOMIC_INIT(0);
atomic_inc(&a1);
printk(“%d\n”, atomic_read(&a1));
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Ejemplo de mecanismos compuestos…
Linux
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Technique Scope Skel. example

RW locks

• All CPU

• Busy wait:

• NOT sleep, sched., etc. on C.S.

rwlock_t x1 = RW_LOCK_UNLOCKED;
read_lock(&x1);
/* ... SC: sección crítica ... */
read_unlock(&x1);
write_lock(&x1);
/* ... SC: sección crítica ... */
write_unlock(&x1);

Spin Locks + irq

• All CPU

• Busy wait and no interrup.:

• NOT sleep, sched., etc. on C.S.

spinlock_t l1 = SPIN_LOCK_UNLOCKED;
unsigned long flags;
spin_lock_irqsave(&l1, flags); 
/* ... SC: sección crítica ... */
spin_unlock_irqrestore(&l1, flags);

RW locks + irq

• All CPU

• Busy wait and no interrup.:

• NOT sleep, sched., etc. on Critial 

Section (C.S.)

read_lock_irqsave();
read_lock_irqrestore();

write_lock_irqsave();
write_lock_irqrestore();



Alejandro Calderón Mateos

Chained execution of event treatment
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Event in execution
Event that 

comes
Usual treatment

Hw. Int. / 

exception

Hw. Int. / 

exception

• Always allowed, never or only more priority ones (if 

C.S. then disabled).

Sys. call / 

Sw. Int.

Hw. Int. / 

exception
• Interruptible always (if C.S. then disabled).

Hw. Int. / 

exception

Sys. call / 

Sw. Int.
• Can not be interruptible.

Sys. call / 

Sw. Int.

Sys. call / 

Sw. Int.

• Non-preemptible Kernel
• Non-interruptible (queued).

• Old UNIX and Linux some time ago.

• Preemptible Kernel.
• Critical sections must be protected.

• Solaris, Windows 2000, etc.
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Chained execution of event treatment
Linux

ARCOS @ UC3M121

Kernel Control Path UP protection *MP Protection

Exceptions Mutex -

Hw. Int. Deshabilitar Int. Spin Lock

Sw. Int. - Spin Lock (SoftIrq, N Tasklets)

Exceptions + Hw. Int. Deshabilitar Int. Spin Lock

Exceptions + Sw. Int. Encolar Sw. Int. Spin Lock

Hw. Int. + Sw. Int. Deshabilitar Int. Spin Lock

Exc. + Int HW. + Sw. Int. Deshabilitar Int. Spin Lock

Understanding the Linux Kernel (página 218)
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Context…
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U
K

Soft. int.
System 

call

Hw. 
int.

Excep.

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

Internal operation of the kernel divided 

among: software interrupts, system calls, 

exceptions, and hardware interruptions

Process
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Device
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Context…
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U
K

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

An operating system functionality (existing 

or to be added) is distributed in different 

locations, in the code of different event 

handling routines...
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Soft. int.
System 

call

Hw. 
int.

Excep.

Process

Device



Alejandro Calderón Mateos

Context…
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U
K

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

A functionality is a sequence of tasks:

● They can occur at different times,

they are assigned to the corresponding 

context (event handler, kernel process).

● They share data through global structures.
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• Request block
• Execute Pi+1
• Copy to RAM
• Act. soft. int.
• Pi ready

Request a disk block

Soft. int.
System 

call

Hw. 
int.

Excep.

Process

Device
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Decision tree for matching the execution 

context for a new action
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Action is related to a synchronous or asynchronous event?
synchronous 

(exception or system call)

▶ To include it in the 
event routine 
(exc. or sys. call)

asynchronous 
(Int. HW & Sw. Int.)

critical

Action is critical?
no

▶ To include it in the 
interrupts routine

Action requires to get blocked?
yes

no

▶ To include it in the 
software interrupt

▶ It will be execute within 
a kernel process
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