
Lesson 2
How an operating system works

ARCOS Group

Universidad Carlos III de Madrid

Operating System Design
Degree in Computer Science and Engineering

Alejandro Calderón Mateos

Exercises, guided labs and laboratories

Exercises

✔️

Guided Labs.

✔️

Laboratories

X

ARCOS @ UC3M2

Alejandro Calderón Mateos

Recommended readings

ARCOS @ UC3M3

1. Carretero 2007:
1. Cap.2

1. Tanenbaum
2006(en):

1. Cap.1

2. Stallings 2005:
1. Parte uno (transfondo)

3. Silberschatz 2006:
1. Cap.2

Base Recommended

Alejandro Calderón Mateos

To remember…

ARCOS @ UC3M4

1. To prepare and review the class explanations.
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M5

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M6

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Alejandro Calderón Mateos

Scenarios where the O.S. is present (1/3)

ARCOS @ UC3M7

▶System boot
▶It initialize the hardware and the kernel process,

system and users in the proper order.
▶Behavior as executable application.

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M8

.O.S.
(kernel)

HW.
CPU Disc RAM

wake-up !
privilegiate

(kernel) mode !
Setup initial
structures

Alejandro Calderón Mateos

kernel and user mode

review

▶Privileged mode (kernel mode)

▶Able to access to all memory space

▶Able to use all CPU resources

▶Ordinary mode (user mode)

▶Restricted memory space

▶Some registers or instructions are limited

ARCOS @ UC3M9

User
(level 1)

Kernel

(level 0)

▶The operating system needs, at least, two execution modes:

Alejandro Calderón Mateos

Scenarios where the O.S. is present (2/3)

ARCOS @ UC3M10

▶Event handling (Event treatments)
▶Once booted, the operating system is a passive entity
▶Process and hardware are the active entities (and they use the kernel)
▶Except at boot-time, always there is a process executing (e.g.: idle)

▶Access to O.S. services through event handling
▶Hardware interrupts
▶Software interrupts
▶Exceptions
▶System calls

▶Behavior as library.

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M11

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• char buffer[1024];
…

• read(fd,buffer)
•

Pi

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M12

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• Request block
• Execute Pi +1

syscall

Pi • char buffer[1024];
…

• read(fd,buffer)
•

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M13

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• Request block
• Execute Pi +1

hw int.

• Copy to RAM
• Pi ready
• Continue Pi +1

Pi

syscall

• char buffer[1024];
…

• read(fd,buffer)
•

Alejandro Calderón Mateos

Scenarios where the O.S. is present (3/3)

ARCOS @ UC3M14

▶Kernel process
▶It performs tasks related to the operating system that

are better developed in the context of a independent process.
▶Behavior as proprietary process, for special tasks.

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M15

.O.S.
(kernel)

HW.
CPU Disc RAM

while (true) {
• sleep(1);
• If (idle > 20m)

issue sleep to disk
}

Alejandro Calderón Mateos

Scenarios where the O.S. is present
summary

ARCOS @ UC3M16

▶ System boot
▶ Perform initialization tasks for hardware, kernel, and processes in the proper order.
▶ Run as executable program.

▶ Event handling (treatment)
▶ After booting, the operating system is a passive entity.

▶Processes and hardware are active entities (they use the kernel)
▶Except at the beginning, there is always a process running (idle)

▶ Access to the services of the .O.S.
▶Hardware Int, Software Int, Exceptions, and System calls

▶ As library.

▶ Kernel process
▶ Performs operating system tasks that are best done in the context of an independent process
▶ As priority processes, for special tasks.

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M17

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Alejandro Calderón Mateos

Boot process

● The Reset loads the initial values in the CPU registers
● PC ← Boot address of the ROM loader

(FFFF:0000)

ARCOS @ UC3M18 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

…

PC

Alejandro Calderón Mateos

Boot process

● The boot loader ROM is executed
● Power-On Self Test (POST)
● Master Boot Record is loaded into memory (0000:7C00)

ARCOS @ UC3M19 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

…

PC

Alejandro Calderón Mateos

Boot process

● The boot loader ROM is executed
● Power-On Self Test (POST)
● Master Boot Record is loaded into memory (0000:7C00)

ARCOS @ UC3M20

ROM

MBR

…

http://www.ibm.com/developerworks/linux/library/l-linuxboot/

PC

Alejandro Calderón Mateos

Boot process

● The Master Boot Record is executed
● (It is the first part of the O.S. loader)
● It searches for an active partition in the partition table
● It loads the Boot Record into memory from this partition

ARCOS @ UC3M21 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL

…

PC

Alejandro Calderón Mateos

Boot process

● The Boot Loader is executed
● (It is the second part of the O.S. loader)
● It might show some boot option list…
● The boot loader loads into memory the resident part of the

operating system (kernel and modules)

ARCOS @ UC3M22 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest
of OS

…

PC

Alejandro Calderón Mateos

Boot process

● The kernel initialization is performed (1/2)
● Hardware initialization
● Check errors in file systems
● Establishes the initial internal structures of the O.S.
● Switch to protected mode

ARCOS @ UC3M23 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest
of OS

…

PC

Alejandro Calderón Mateos

Boot process

● The kernel initialization is performed (2/2)
● The rest of the .O.S is set in protected mode
● The initial processes are built

● Kernel process, system services and terminals (login)

ARCOS @ UC3M24 http://duartes.org/gustavo/blog/post/how-computers-boot-up

ROM

MBR

BL
Rest
of OS

…

PC

Alejandro Calderón Mateos

Boot process
summary

ARCOS @ UC3M25 http://duartes.org/gustavo/blog/post/how-computers-boot-up

PC

Alejandro Calderón Mateos

Example of boot sequence

▶GNU-Linux
ARCOS @ UC3M26

Alejandro Calderón Mateos

GNU-Linux

ARCOS @ UC3M27

PC

http://www.ibm.com/developerworks/linux/library/l-linuxboot/

Alejandro Calderón Mateos

GNU-Linux

ARCOS @ UC3M28

• LILO (Linux Loader) or GRUB (Grand Unified Bootloader).

• It shows an option menu (/etc/grub.conf)
• The kernel image is loaded into memory (vmlinuz) and it is executed with the

parameters of the selected menu option.
• It is also possible to “chain” the bootloader (with other one).

PC

http://funnix.net/wp-content/uploads/2012/07/grub.jpg

grub> set root=(hd0)/boot
grub> insmod linux
grub> linux /bzImage-2.6.14.2
grub> initrd /initrd-2.6.14.2.img
grub> boot

Alejandro Calderón Mateos

GNU-Linux

ARCOS @ UC3M29

• The kernel is executed (vmlinuz): base
• If needed, the kernel is uncompressed
• The hardware plug-and-play is done (and the associated kernel drivers are initialized)

http://gxemul.sourceforge.net/gxemul-stable/doc/debian-1.png

PC

Alejandro Calderón Mateos

GNU-Linux

ARCOS @ UC3M30

• The kernel is executed (initrd): modules
• initrd is the initial system with the necessary drivers to fully boot.
• The shell-script /linuxrc is executed

• It initializes the drivers with the associated configuration.

• The initrd use to ‘pivot’ to the planned root system:
• Itself (embedded systems), partition in the hard disk, NFS, etc.

http://milindchoudhary.wordpress.com/2009/03/30/linux-boot-process/

PC

Alejandro Calderón Mateos

GNU-Linux

ARCOS @ UC3M31 http://www.ibm.com/developerworks/linux/library/l-linuxboot/

PC

• The init process is executed
• The init process (pid 1) boots all system process…
• … and the terminal process (login o xlogin) in order user could authenticate.
• It goes sleep waiting for the arrival of events (cpu_idle)

Alejandro Calderón Mateos

Speed-up the Linux boot

▶Asynchronous hardware initialization

▶Asynchronous initialization of services

ARCOS @ UC3M32 http://www.digitaltrends, http://lwn.net/Articles/299483, https://es.wikipedia.org/wiki/Systemd

Alejandro Calderón Mateos

Speed-up the “Windows 8" boot

ARCOS @ UC3M33 http://www.digitaltrends.com/computing/windows-8-boot-time-scaled-down-to-eight-seconds/

POST/Pre-boot

POST/Pre-boot
Hiberfile

Read
Driver

Init
User

Session Init

System Initialization (drivers, services, session 0)
User

Session Init

Desktop ReadyWinlogon

Desktop ReadyWinlogon

C
o

ld

B
o

o
t

W
in

d
o

w
s

8

fa
st

st

ar
tu

p

Boot
menu

Boot
menu

Alejandro Calderón Mateos

MBR → GPT

ARCOS @ UC3M34 http://www.it-support-singapore.com/wp-content/uploads/2012/08/differenace-MBR-GPT1.jpg

Master Boot Record

• 4 primary part.
3P. + 1E. (+n U.L.)

• 32 bits
• 2 TB/part.

232*512 bytes/sector

• BIOS
• Old O.S.
• 1 MBR +

no CRC32

GUID Partition Table

• 128 part.
128 in several O.S.

• 64 bits
• 9 ZB/part.

264*512 bytes/sector

• UEFI
• New S.O.
• 2 GPT +

CRC32
more secure

Alejandro Calderón Mateos

BIOS → UEFI

ARCOS @ UC3M35 http://answers.microsoft.com/en-us/windows/forum/windows8_1-security/uefi-secure-boot-in-windows-81/65d74e19-9572-4a91-85aa-57fa783f0759

Alejandro Calderón Mateos

GPT + UEFI
Example of mandatory partitions with dual-boot

ARCOS @ UC3M36 http://askubuntu.com/questions/350352/making-windows-8-partition-larger

EFI
W-recovery
W-MSR
W-system
L-system

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M37

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3

Alejandro Calderón Mateos

Event types

ARCOS @ UC3M38

▶System calls
▶Event for requesting an operating system service

▶Exceptions
▶Exceptional events while executing an instruction

▶Software interrupts
▶Deferred event as part of a pending event treatment

▶Hardware interrupts
▶Events that come from hardware.

Hardware

User

Alejandro Calderón Mateos

Event types
System calls

ARCOS @ UC3M39

▶Event for requesting an O.S.
service.

▶User programs access to O.S.
services through system calls.

▶They are seen by
programmers as function calls.

Operating System

Hardware

Application

• …
• m=read(fd,buff,n);
• …

Alejandro Calderón Mateos

Event types
Hardware interrupts

ARCOS @ UC3M40

▶Events that come from hardware.

▶The O.S. has to attend to
something that the hardware
needs (data arrival, exceptional
situation, etc.)

▶It requires a set of subroutines
associated with each event that
the hardware can request.

Operating System

Hardware

Application
• …
• …
• …

• …
• …
• …

Alejandro Calderón Mateos

Event types
Exceptions

ARCOS @ UC3M41

▶Exceptional events while executing
an instruction.

▶They can be problems (division by
zero, illegal instruction, segment
violation, etc.) or warnings (page
failure, etc.)
▶~ Hardware interruption

generated by the CPU itself.

▶It requires a set of subroutines
associated with each exception that
may occur.

Operating System

Hardware

Application

• …
• x = y = 0;
• r = x/y;
• …

Alejandro Calderón Mateos

Event types
Software interrupts

ARCOS @ UC3M42

▶Event to deferre the non-
critical part of the event
treatment.

▶Part of the event treatment is
deferred:
▶To wait better opportunity.
▶Treated most urgent events first.

Operating System

Hardware

Application

• …
• …
• …

Alejandro Calderón Mateos

Metaphor: the book store...

ARCOS @ UC3M43

▶Hardware devices
providers.

▶Computer
the book store.

▶CPU and RAM
seller and shelves.

▶Operating System
Instruction book the seller follows.

▶Process
Buyers.

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
System call

ARCOS @ UC3M44

▶Buyer want to buy a book
▶The process issues a system call

▶Seller request the book to the associated
provider (because out of stock)

▶The O.S. issues a disk request for a data
block

▶Seller puts the buyer on hold until he has
the book to attend to other situations

▶The O.S. block the process and execute
another process or pending tasks

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
System call

ARCOS @ UC3M45

▶Buyer want to buy a book
▶The process issues a system call

▶Seller request the book to the associated
provider (because out of stock)

▶The O.S. issues a disk request for a data
block

▶Seller puts the buyer on hold until he has
the book to attend to other situations

▶The O.S. block the process and execute
another process or pending tasks

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
Hardware interrupt

ARCOS @ UC3M46

▶The provider notifies by phone that he/she
is at the door and he/she needs urgent
attention (because he/she double parked)

▶Hard disk fire a hardware interrupt

▶Seller put the book boxes into a temporary
shelf, along with a post-it that labels it as
'todo: to deliver'

▶The O.S. copies the disk block into
memory and activates a software interrupt

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
Software interrupt

ARCOS @ UC3M47

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

▶When no other priority task is pending, the
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered,
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”,
and when it is executed it will copy the
data

Alejandro Calderón Mateos

Metaphor: the book store...
Software interrupt

ARCOS @ UC3M48

▶When no other priority task is pending, the
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered,
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”,
and when it is executed it will copy the
data

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
Software interrupt

ARCOS @ UC3M49

▶When no other priority task is pending, the
"todo" tasks is done

▶If there is no any priority event pending,
software interrupts are attended

▶For each pending item to be delivered,
buyer is notified that can pick it up

▶O.S. changes the process state to “ready”,
and when it is executed it will copy the
data

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Metaphor: the book store...
Exception

ARCOS @ UC3M50

▶If a buyer ask for a coffee, is invited to
leave the bookstore (and go to a cafeteria).
Then, seller continues serving clients.

▶An exception occurs while a process is
running, the process is killed

▶If the cash register is broken, then the
bookstore must be closed

▶A serious exception occurs while running
the operating system, kernel-panic and
stops

O
p

er
at

in
g

Sy
st

em
H

ar
d

w
ar

e
A

p
p

lic
at

io
n

s

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M51

.O.S.
(kernel)

HW.

App.

CPU Disc RAM

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’;

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M52

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’;

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M53

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’;

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M54

.O.S.
(kernel)

HW.

App.

syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

sw int.
• Pi ready

• char buffer[1024];
…

• read(fd,buffer)
• buffer[2048]=‘\0’;

Alejandro Calderón Mateos

Simplified example

ARCOS @ UC3M55

.O.S.
(kernel)

HW.

App.
• char buffer[1024];

…

• read(fd,buffer)
• buffer[2048]=‘\0’; syscall

CPU Disc RAM

• Request block
• Execute Pi+1

hw int.

• Copy to RAM
• Act. int. soft.

sw int.
• Pi ready

excep.

• SIGSEGV

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M56

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3

Alejandro Calderón Mateos

Classification of events

ARCOS @ UC3M57

Synchronous Asynchronous

Hardware

Software

Alejandro Calderón Mateos

Classification of events

ARCOS @ UC3M58

Synchronous Asynchronous

Hardware Exceptions Hardware interrupts

Software System calls Software interrupts

▶ Generated by software o hardware:
▶ Generated by hardware

▶Hardware provides the request and the associated vector

▶ Generated by software
▶An assembly instruction provides the request and the associated vector

Alejandro Calderón Mateos

Classification of events

ARCOS @ UC3M59

Synchronous Asynchronous

Hardware Exceptions Hardware interrupts

Software System calls Software interrupts

▶ Synchronous and asynchronous events:
▶ Synchronous events

▶ It activation is predictable, and related to the actual process’ code

▶ Executed in the context of the “requested” process

▶ Asynchronous events
▶ It activation is unpredictable, and related to any (or none) process

▶ Executed in the context of of a process not related with the interrupt

Alejandro Calderón Mateos

Basic characteristics…

ARCOS @ UC3M60

Previous execution mode Generated by

Hardware interrupts

Exceptions

System calls

Software interrupts

Alejandro Calderón Mateos

Basic characteristics…

ARCOS @ UC3M61

Previous execution mode Generated by

Hardware interrupts
• It can be User or System

• NO, it doesn’t influences in treatment
• I/O Devices
• Interrupts among CPUs (IPI)

Exceptions
• It can be User or System

• YES. it influences in the treatment

• CPU itself (~hw int.. from CPU)

• Usually programming errors,
NO always (page faults, debugging, etc.)

System calls • Always User • Applications

Software interrupts • Always System • Because the treatment of all other events:
used by the non-critical parts

Alejandro Calderón Mateos

Relationship between events

ARCOS @ UC3M62

▶ Components that treats synchronous events
▶ More related with process

▶ Components that treats asynchronous events
▶ More related with Devices

▶ There are tasks that involves both event types.
▶ E.g.: access to a disk (system call + disk interrupt)

unblocking

interrupt

Dev. MDev. 1
…

Proc. N
Block system

call

Proc. 1

Systemcall

…

Upper layer

Lower layer

Dev. 2

Proc. 2

exception

Interrupt

Dev. 3

Proc. 3

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M63

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Interrupción

desbloqueante

Dev. MDev. 1
…

Proc. N
Systemcall

bloqueante

Proc. 1

Systemcall

…

Capa superior

Capa inferior

Dev. 2

Proc. 2

exception

Interrupción

Dev. 3

Proc. 3

Alejandro Calderón Mateos

Event management

ARCOS @ UC3M64

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)

Alejandro Calderón Mateos

Event management

ARCOS @ UC3M65

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)

▶All events are treated in a similar way (~hw int..)

▶ It has been introduced its event management

Alejandro Calderón Mateos

Event management

ARCOS @ UC3M66

▶O.S. event mgm. use to be generic and hardware-architecture agnostic
▶ Linux without priority (SPARC has support) and Windows with priority (Intel doesn’t has support)

▶All events are treated in a similar way (~hw int..)

▶ It has been introduced its event management

▶ It is saved the state in the system stack

▶ Usually the PC and SR (state) registers
▶ CPU switch into privilegiate mode and jump into the assoc. treatment subroutine

▶ Save extra registers if necessary

▶ The event handler subroutine treats the event

▶ Restore extra registers saved if necessary
▶ The event handler subroutine ends: RETI

▶ Restore the saved state and PC and restore the previous mode

kernel

Services

App

Hardware

Alejandro Calderón Mateos

Event management

▶ The event is handled in the context of the active process.

▶ Current active process memory map is used, even though is not
related with the event handled.

▶ The system uses to independent stacks:

◻ User stack (user mode) or System Stack (system)

ARCOS @ UC3M67

kernel

Services

App

Hardware

▶Detail 1 > During the boot sequence, no event is handled
▶ System mode, disabled interrupts, and inactive MMU

▶Detail 2 > Cuando ocurre un evento, entra el S.O para tratarlo:
▶ There is a mode switching (into privilegiate mode)

▶ but is not mandatory to perform a context switching

▶Detail 3 > An event could be ‘fired’ while treating other event
▶ prioritary event -> push current in a stack and treat the new one;

otherwise -> wait to end the current treatment to perform the new event’s treatment

Alejandro Calderón Mateos

Event management

ARCOS @ UC3M68

▶Hardware interrupts:
▶ General treatment
▶ Examples: W & L

▶Exception:
▶ General treatment

▶System calls:
▶ General treatment
▶ Examples: W & L

▶Software interrupts:
▶ General treatment
▶ Examples: W & L

Alejandro Calderón Mateos

Hardware interrupts
characteristics

ARCOS @ UC3M69

▶Asynchronous events that comes from the hardware to
notify C.P.U. to handle it

▶Previous execution mode:
▶It could be user or system (it does not influences the

treatment)

▶ Generated by:
▶I/O devices
▶System critical conditions (e.g.: power shortage)
▶Inter-processor Interrupts (IPI)

Alejandro Calderón Mateos

Hardware interrupts
treatment (1/5)

ARCOS @ UC3M70

User Mode

Kernel Mode

IDT Handler of
device X

int main (int argc, char **argv)
{

…
/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA, hnd_exceptionAritmetica);
instal_man_int(EXC_MEMORIA, hnd_exceptionMemory);
instal_man_int(INT_RELOJ, hnd_interruptClock);
instal_man_int(INT_DeviceS, hnd_interruptDevices);
instal_man_int(LLAM_SISTEMA, hnd_SystemCall);
instal_man_int(INT_SW, hnd_softwareInterrupt);
…

Alejandro Calderón Mateos

Hardware interrupts
treatment (2/5)

ARCOS @ UC3M71

User Mode

Kernel Mode

IDT

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application

Handler of
device X

Alejandro Calderón Mateos

Hardware interrupts
treatment (3/5)

ARCOS @ UC3M72

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

▶ First, save basic state (PC, RE, SP) on system stack

▶ CPU switch into privilegiate mode and jump to the associated treatment routine

Handler of
device X

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application

Alejandro Calderón Mateos

Hardware interrupts
treatment (4/5)

ARCOS @ UC3M73

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void interrupcionDevice ()

{

▶ Salvar estado (si es necesario)
▶ La subrutina trata el evento:

▶ Realiza lo urgente
▶ Programa una tarea pendiente

(si necesario)
▶ Restaura el estado (si necesario)
▶ Execute instrucción de retorno de interrupción (RETI)

▶ Restaura estado básico y modo.
}

Handler of
device X

Alejandro Calderón Mateos

Hardware interrupts
treatment (5/5)

ARCOS @ UC3M74

User Mode

Kernel Mode

IDT

#include "services.h"

int main ()
{

for (int i=0; i<1000000; i++)

printf(“result = %d\n“,complex_calculus(i));

return 0;
}

Application

Handler of
device X

Alejandro Calderón Mateos

Hardware interrupts
treatment in Windows

ARCOS @ UC3M75

Avisa perif. retire IRQ

Aquí: mínimo del servicio:
Perif: Estado?,

siguiente operación

Call DPC→ grueso del servicio

Retorno

Inhibe las Interrupciones

Salva el estado de la ejecución

Inhibe el nivel IRQL atendido y

los inferiores

Localiza e invoca la

correspondiente ISR [RTI]

Retira la interrupción

Restaura el estado de la

máquina

Interrupt Dispatch Routine

Interrupt Service Routine

Kernel

Interrupt!

User/kernel

Inside Windows 2000 (página 104)

High
Power Fail

Inter-processor Interrupt
Clock

Dispatch/DPC

Device n

Device 1

APC
Passive

...

31
30
29
28

0
1
2

Hardware

Interrupts

Software

Interrupts

Normal Thread Execution

Alejandro Calderón Mateos

Hardware interrupts
treatment in Linux

ARCOS @ UC3M76 http://chxxxyg.blog.163.com/blog/static/1502811932010627015098/

Alejandro Calderón Mateos

Exceptions
characteristics

ARCOS @ UC3M77

▶Synchronous events, exceptional ones while
executing an instruction

▶Previous execution mode:
▶It could be user or system (YES, it influences the treatment)

▶ Generated by:
▶Usually by hardware (usually errors)
▶But not always are errors (e.g.: page fault, debugging, etc.)

Alejandro Calderón Mateos

int main (int argc, char **argv)
{

…
/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA, hnd_exceptionAritmetica);
instal_man_int(EXC_MEMORIA, hnd_exceptionMemory);
instal_man_int(INT_RELOJ, hnd_interruptClock);
instal_man_int(INT_DeviceS, hnd_interruptDevices);
instal_man_int(LLAM_SISTEMA, hnd_SystemCall);
instal_man_int(INT_SW, hnd_softwareInterrupt);
…

Exceptions
treatment (1/4)

ARCOS @ UC3M78

User Mode

Kernel Mode

Arithmetic exception
Handler

IDT

Alejandro Calderón Mateos

Exceptions
treatment (2/4)

ARCOS @ UC3M79

#include "services.h"

int main () {
double result;

result = 0 / 0;

printf(“result = %d\n“,result);

return 0;
}

User Mode

Kernel Mode

Application

Arithmetic exception
Handler

IDT

Alejandro Calderón Mateos

Exceptions
treatment (3/4)

ARCOS @ UC3M80

#include "services.h"

int main () {
double result;

result = 0 / 0;

printf(“result = %d\n“,result);

return 0;
}

User Mode

Kernel Mode

Application

IDT

exception

CPU

Arithmetic exception
Handler

▶ First, save basic state (PC, RE, SP) on system stack

▶ CPU switch into privilegiate mode and jump to the associated treatment routine

Alejandro Calderón Mateos

Exceptions
treatment (4/4)

ARCOS @ UC3M81

User Mode

Kernel Mode

Application

IDT
Arithmetic exception

Handler
exception

CPU

● Si es un error:
● Si el nivel previo de la CPU era de sistema:

● Pánico: error en el código del .O.S. => mensaje + detener el .O.S.

● Si el nivel previo de la CPU era de User:
● Si está siendo depurado, se notifica a depurador

● Si el programa establece un Handler of la exception, ejecutarlo

● En caso contrario, se aborta el proceso

● Si NO es un error: (Ej.: fallo de página previsto)
● Se realiza la tarea prevista (Ej.: asignar una nueva página)

Da igual el nivel previo de ejecución

Alejandro Calderón Mateos

System calls
characteristics

ARCOS @ UC3M82

▶Synchronous events for requesting O.S. services
with an unprivileged instruction

▶Previous execution mode:
▶User mode always

▶ Generated by:
▶By applications

Alejandro Calderón Mateos

System calls
treatment

ARCOS @ UC3M83

int main (int argc, char **argv)
{

…

/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA, hnd_exceptionAritmetica);
instal_man_int(EXC_MEMORIA, hnd_exceptionMemory);
instal_man_int(INT_RELOJ, hnd_interruptClock);
instal_man_int(INT_DeviceS, hnd_interruptDevices);
instal_man_int(LLAM_SISTEMA, hnd_SystemCall);
instal_man_int(INT_SW, hnd_softwareInterrupt);

…

Alejandro Calderón Mateos

System calls
treatment (1/9)

ARCOS @ UC3M84

#include "services.h"

int main () {

if (crear_proceso("excep_arit")<0)
printf("Error creando excep_arit\n");

function_XXXXX(…)

return 0;
}

User/Application-01.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

System calls
treatment (2/9)

ARCOS @ UC3M85

…
int crear_proceso (char *prog) ;
int terminar_proceso () ;
int function_XXXXX(.. args..) ;
…

User/services.h

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

System calls
treatment (3/9)

ARCOS @ UC3M86

…
int terminar_proceso () {

return llamsis(TERMINAR_PROCESO, 0);
}

int function_XXXXX(.. args..) {
return llamsis(FUNCION_XXXXX , ...);

}
…

User/Services.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

int llamsis (int Systemcall, int nargs,…//args) {
int i;

write_register(0, Systemcall);
for (i=1; nargs; nargs--, i++)

write_register(i, args[i]);
trap(); // genera int.
return read_register(0);

}
…

System calls
treatment (4/9)

ARCOS @ UC3M87

User/krn.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

int llamsis (int Systemcall, int nargs,…//args) {
int i;

write_register(0, Systemcall);
for (i=1; nargs; nargs--, i++)

write_register(i, args[i]);
trap(); // genera int.
return read_register(0);

}
…

System calls
treatment (5/9)

ARCOS @ UC3M88

User/krn.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Int.

CPU

▶ First, save basic state (PC, RE, SP) on system stack

▶ CPU switch into privilegiate mode and jump to the associated treatment routine

Alejandro Calderón Mateos

System calls
treatment (6/9)

ARCOS @ UC3M89

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

void hnd_SystemCall()
{

int serviceId, ret;

serviceId=read_register(0);
if (serviceId < NUMERO_Services)

ret=(tableServices[serviceId].funService)();
else ret=-1; /* non-available service*/
write_register(0,ret);

}

nucleo/Services.c

IDT

Int.

CPU

Alejandro Calderón Mateos

#define NUMERO_Services 14

#define CREAR_PROCESO 0

#define TERMINAR_PROCESO 1

#define ABRIR 2

…

#define FUNCION_XXXXX 13

System calls
treatment (7/9)

ARCOS @ UC3M90

nucleo/services.h

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

...

servicio tableServices [NUMERO_Services] = {

{sis_crearProceso},

{sis_terminarProceso},

…

{sis_function_XXXXX}

} ;

System calls
treatment (8/9)

ARCOS @ UC3M91

nucleo/Services.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

int sis_terminarProceso()

{

printk("-> FIN PROCESO %d\n", procesoActual->id);

liberarProceso();

return (0); /* no debería llegar aquí… */

}

int sis_function_XXXXX(){

…

}
…

System calls
treatment (9/9)

ARCOS @ UC3M92

nucleo/servicio_xxxxx.c

System calls

sis_XXXXX

User Mode

Kernel Mode

Application

O.S. services

IDT

Alejandro Calderón Mateos

System calls
treatment in Linux (1/7)

ARCOS @ UC3M93

void __init trap_init(void)
{

…
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate(X86_TRAP_NP, segment_not_present);
set_intr_gate(X86_TRAP_GP, general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, coprocessor_error);
set_intr_gate(X86_TRAP_AC, alignment_check);

#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);

#endif

#ifdef CONFIG_X86_32
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
set_bit(SYSCALL_VECTOR, used_vectors);

#endif
…

/usr/src/linux/arch/x86/kernel/traps.c

Alejandro Calderón Mateos

System calls
treatment in Linux (2/7)

ARCOS @ UC3M94

#include <stdio.h>

int main (int argc, char *argv[])
{

char *src=”testing the system call”;
char dest[40];
int ret;

ret = syscall(222,dest,src);
printf("copied string: %s\ncode: %d\n",dest,ret) ;

}

/usr/src/linux/test/test1.c

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Linux (3/7)

ARCOS @ UC3M95

…
int syscall (…)
{

MOVE %eax, 222
MOVE %ebx, argv-1
MOVE %ecx, argv-2
sysenter
%eax = valor devuelto
RET

}

/usr/src/libc/…

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Linux (3/7)

ARCOS @ UC3M96

…
int syscall (…)
{

MOVE %eax, 222
MOVE %ebx, argv-1
MOVE %ecx, argv-2
sysenter
%eax = valor devuelto
RET

}

/usr/src/libc/…

sis_222

User Mode

Kernel Mode

Application

libc.so

IDT

_sys_call_table

_system_call()

Int.

CPU

Alejandro Calderón Mateos

System calls
treatment in Linux (4/7)

ARCOS @ UC3M97

ENTRY(system_call)
• Salva estado

• En pila de sistema
• Comprueba los parámetros de Systemcall

• Linux: registros, Windows: pila
• sys_call_table(%eax)
• ret_from_sys_call

• Restaura estado
• Replanificación

/usr/src/linux/arch/x86/kernel/entry_32.S

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Linux (5/7)

ARCOS @ UC3M98

…
220 i386 getdents64 sys_getdents64 compat_sys_getdents64
221 i386 fcntl64 sys_fcntl64 compat_sys_fcntl64
222 i386 kstrcpy sys_kstrcpy
223 is unused
224 i386 gettid sys_gettid
225 i386 readahead sys_readahead sys32_readahead
226 i386 setxattr sys_setxattr
…

/usr/src/linux/arch/x86/syscalls/syscall_32.tbl

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Linux (6/7)

ARCOS @ UC3M99

…
539 x32 process_vm_readv compat_sys_process_vm_readv
540 x32 process_vm_writev compat_sys_process_vm_writev
541 x32 setsockopt compat_sys_setsockopt
542 x32 getsockopt compat_sys_getsockopt

543 x32 kstrcpy sys_kstrcpy
…

/usr/src/linux/arch/x86/syscalls/syscall_64.tbl

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Linux (7/7)

ARCOS @ UC3M100

…
SYSCALL_DEFINE2(kstrcpy, char *, dst, char *, src)
{

int i=0; char c;

do { get_user(c, src+i); put_user(c, dest+i); i++; } while (c != 0);

printk ("++ kstrcpy: done\n");
return 1;

}

/usr/src/linux/kernel/sys.c

sis_222

User Mode

Kernel Mode

libc.so

IDT

_sys_call_table

_system_call()

Application

Alejandro Calderón Mateos

System calls
treatment in Windows

ARCOS @ UC3M101

Application

Kernel32.dll

Ntdll.dll

NtCreateFile

NtReadFile

NtClose

SSDTabl
e

User Mode

Kernel Mode
System
Service
Dispatcher (SSD)

Alejandro Calderón Mateos

Software interrupt
characteristics

ARCOS @ UC3M102

▶Asynchronous events to deferre the non-critical part
of the event treatment
▶ To wait better opportunity.
▶ Treated the critical parts first.

▶Previous execution mode:
▶ Always system mode

▶ Generated by:
▶In the event treatment of all former events,

software interrupts is used for the non-critical parts

Alejandro Calderón Mateos

Software interrupt
treatment

ARCOS @ UC3M103

int main (int argc, char **argv)
{

…

/* instalar los manejadores para los vectores de interrupción */
instal_man_int(EXC_ARITMETICA, hnd_exceptionAritmetica) ;
instal_man_int(EXC_MEMORIA, hnd_exceptionMemory) ;
instal_man_int(INT_RELOJ, hnd_interruptClock) ;
instal_man_int(INT_DeviceS, hnd_interruptDevices) ;
instal_man_int(LLAM_SISTEMA, hnd_SystemCall) ;
instal_man_int(INT_SW, hnd_softwareInterrupt) ;

…

Alejandro Calderón Mateos

Interrupt Service Routine
for keyboard

Interrupción hardware
treatment (1/2)

ARCOS @ UC3M104

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard (idDevice)
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks,

Int_software_Keyboard);
• activate_int_SW();

}

Alejandro Calderón Mateos

Interrupt Service Routine
for keyboard

Interrupción hardware
treatment (1/2)

ARCOS @ UC3M105

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard (idDevice)
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks,

Int_software_Keyboard);
• activate_int_SW();

}

Alejandro Calderón Mateos

Software interrupt
treatment (1/2)

ARCOS @ UC3M106

User Mode

Kernel Mode

Interrupt Service Routine
for keyboard

Interrupt with minimal priority: it will be executed
when no more critical task are present

void Int_software_Keyboard (idDevice)
{

• get “DataKeyboard” from “idDevice”
• P = ExtractBCP(&(DataKeyboard.waiting))
• IF P != NULL

• P.state = READY
• Insert(&ReadyList, P);

}

Alejandro Calderón Mateos

Interrupt Service Routine
for keyboard

Interrupción hardware
treatment (2/2)

ARCOS @ UC3M107

User Mode

Kernel Mode

IDT

Hw. Int.

CPU

void Int_hardware_Keyboard (idDevice)
{

• idDevice -> HardwareID
• Key = readPort(HardwareID)
• Insert(Key, DataKeyboard.Buffer)
• InsertPendTask(&listPendTasks,

Int_software_Keyboard);
• activate_int_SW();

}

Alejandro Calderón Mateos

Software interrupt
treatment (2/2)

ARCOS @ UC3M108

User Mode

Kernel Mode

IDT

Interrupt Service Routine
for keyboard

void hnd_softwareInterrupt () /* treatment of software interrupts */
{

void (*function)(void *);
void *Data = NULL;

mientras (thereArePendTasks(listPendTasks))
{

extractFirstPendTask(&(listPendTasks), &(function), &(Data));
function(Data);

}

“deactivate_int_software();”
}

Interrupt with minimal priority: it will be executed
when no more critical task are present

Alejandro Calderón Mateos

Software interrupt
types of treatment in Linux

ARCOS @ UC3M109

▶ Bottom-Halves (BH):
▶ It was the first implementation of soft.int. in Linux. (removed in k2.6.x)
▶ They are always executed in serie (no matters the number of CPUs).

There are only 32 handlers (previously registered).

▶ Softirqs:
▶ Softirq of the same type can be run in parallel on different CPUs.

There are only 32 handlers (previously registered).
▶ For example, system timer uses softirqs.

▶ Tasklets
▶ Similar to softirqs except that there is no limit, and easier to use (for programming).
▶ All the tasklets are tunneled through a softirq, so same tasklet can not be run at the same time on several CPUs.

▶ Work queues
▶ The top-half is said to be executed in the context of an interrupt => it is not associated with a process.

Without such association the code can not “go sleep” or be blocked.
▶ Work queues are executed in the context of a process and have skills of a kernel thread.

They have a set of useful functions for creation, planning, etc.

http://www.ibm.com/developerworks/linux/library/l-tasklets/index.html

Alejandro Calderón Mateos

Software interrupt
types of treatment in Windows

ARCOS @ UC3M110

▶Deferral Procedure Calls (DPCs):
▶ Common to the entire operating system (a single queue per CPU)
▶ They perform deferred tasks that have been enqueued:

▶ To complete I/O operations of the controllers.
▶ Processing timers expiration.
▶ Release of waiting threads.
▶ Force re-scheduling when a slice of time expires.

▶ Asynchronous Procedure Calls (APCs):
▶ Individuals to each thread (each thread has its own queue).

▶ The thread must give its permission for its APC to run.

▶ They can be executed from system mode or user mode.
▶ System: allows operating system code to be executed in the context of a thread.
▶ User: used by some I/O APIs on Win32

Alejandro Calderón Mateos

Software interrupt
types of treatment in Windows: DPC

ARCOS @ UC3M111

User

Kernel

DPC

DPC

DPC

DPCs queue objects (e.g., code to be executed): one per processor:

IDT

dispatch/DPC
APC

Dispatcher

IRQL level go down to a lower

level that the DPCs level

When the queue is empty

→ IRQL level go down

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M112

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Clock Interrupt Disk Interrupt

System Call Page Fault

Process Table

Disk Queue

Envelope
Memory

Management

Scheduler

Disk Driver

Alejandro Calderón Mateos

Scenarios where the O.S. is present

ARCOS @ UC3M113

▶System boot

▶Events treatment
▶ Hardware interrupts

▶ Exceptions

▶ System calls

▶ Software interrupts

▶Kernel process
▶ It will do Operating System tasks that are better performed within the context of an

independent process
▶ E.g.: they can perform blocking requests

▶ Compiten con el resto de procesos por la CPU
▶ The scheduler use to give more priority to them

Alejandro Calderón Mateos

Different kinds of process

ARCOS @ UC3M114

▶User process
▶ With non-administrator (user) permissions (e.g.: no root user)

▶ Only executes in privilege mode if:
▶ It needs to resolve a system call it invokes (fork, exit, etc.)

▶ It needs to treat an exception that the process itself has fired (0/0, *(p=null), etc.)

▶ It needs to treat an interrupt that occurs while this process was executing (TCPpk, …)

▶System process
▶ With the administrator (user) permissions (e.g.: root user)

▶ It executes in privilege mode as an user process

▶Kernel process
▶ Belong to the kernel (it does not belong to any user)

▶ It always be executed in privilege mode

Alejandro Calderón Mateos

Kernel process
Example in Linux

ARCOS @ UC3M115

▶kworker, ksoftirqd, irq, rcuob, rcuos, watchdog, …

http://www2.comp.ufscar.br/lxr/source/Documentation/kernel-per-CPU-kthreads.txt

PID USUARIO PR NI VIRT RES SHR S %CPU %MEM HORA+ ORDEN
1 root 20 0 34100 3484 1500 S 0,0 0,0 0:00.98 init
2 root 20 0 0 0 0 S 0,0 0,0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0,0 0,0 0:00.12 ksoftirqd/0
5 root 0 -20 0 0 0 S 0,0 0,0 0:00.00 kworker/0:0H
7 root 20 0 0 0 0 S 0,0 0,0 0:14.27 rcu_sched
8 root 20 0 0 0 0 S 0,0 0,0 0:08.35 rcuos/0
9 root 20 0 0 0 0 S 0,0 0,0 0:05.92 rcuos/1
10 root 20 0 0 0 0 S 0,0 0,0 0:06.10 rcuos/2
11 root 20 0 0 0 0 S 0,0 0,0 0:06.28 rcuos/3
12 root 20 0 0 0 0 S 0,0 0,0 0:00.00 rcu_bh
13 root 20 0 0 0 0 S 0,0 0,0 0:00.00 rcuob/0
14 root 20 0 0 0 0 S 0,0 0,0 0:00.00 rcuob/1
15 root 20 0 0 0 0 S 0,0 0,0 0:00.00 rcuob/2
16 root 20 0 0 0 0 S 0,0 0,0 0:00.00 rcuob/3
17 root rt 0 0 0 0 S 0,0 0,0 0:00.29 migration/0
18 root rt 0 0 0 0 S 0,0 0,0 0:00.10 watchdog/0
19 root rt 0 0 0 0 S 0,0 0,0 0:00.10 watchdog/1
20 root rt 0 0 0 0 S 0,0 0,0 0:00.19 migration/1
21 root 20 0 0 0 0 S 0,0 0,0 0:00.32 ksoftirqd/1
22 root 20 0 0 0 0 S 0,0 0,0 0:00.00 kworker/1:0
23 root 0 -20 0 0 0 S 0,0 0,0 0:00.00 kworker/1:0H
24 root rt 0 0 0 0 S 0,0 0,0 0:00.09 watchdog/2
25 root rt 0 0 0 0 S 0,0 0,0 0:00.25 migration/2
...

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M116

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Alejandro Calderón Mateos

Concurrence in multiprocessors

ARCOS @ UC3M117

▶UP: Uni-Processing.
▶ Operating System and applications are executed only in one CPU.

▶ Simple but worst performance.

▶ASMP: Asymmetric MultiProcessing.
▶ Operating System is executed in one CPU (not all CPU are able to execute the O.S.).

▶ Simple but performance could be improved.

▶SMP: Symmetric MultiProcessing.
▶ Operating System can be executed in any CPU.

▶ Difficult because synchronization mechanism are needed in order to protect the critical
sections.
E.g.: lock the interruptions is not enough to stop O.S. executing in other CPU.

Alejandro Calderón Mateos

Example of basic mechanisms…
Linux

ARCOS @ UC3M118

Technique Scope Skel. example

Disable Interrupts • One CPU only
unsigned long flags;
local_irq_save(flags);
/* ... SC: sección crítica ... */
local_irq_restore(flags);

Spin Locks

• All CPU

• Busy wait:

• NOT sleep, sched., etc. on C.S.

#include <linux/spinlock.h>
spinlock_t l1 = SPIN_LOCK_UNLOCKED;
spin_lock(&l1);
/* ... SC: sección crítica ... */
spin_unlock(&l1);

Mutex

• All CPU
• Blocking wait:

• NOT used on HW. int.

#include <linux/mutex.h>
static DEFINE_MUTEX(m1);
mutex_lock(&m1);
/* ... SC: sección crítica ... */
mutex_unlock(&m1);

Atomic Operations • All CPU
atomic_t a1 = ATOMIC_INIT(0);
atomic_inc(&a1);
printk(“%d\n”, atomic_read(&a1));

Alejandro Calderón Mateos

Ejemplo de mecanismos compuestos…
Linux

ARCOS @ UC3M119

Technique Scope Skel. example

RW locks

• All CPU

• Busy wait:

• NOT sleep, sched., etc. on C.S.

rwlock_t x1 = RW_LOCK_UNLOCKED;
read_lock(&x1);
/* ... SC: sección crítica ... */
read_unlock(&x1);
write_lock(&x1);
/* ... SC: sección crítica ... */
write_unlock(&x1);

Spin Locks + irq

• All CPU

• Busy wait and no interrup.:

• NOT sleep, sched., etc. on C.S.

spinlock_t l1 = SPIN_LOCK_UNLOCKED;
unsigned long flags;
spin_lock_irqsave(&l1, flags);
/* ... SC: sección crítica ... */
spin_unlock_irqrestore(&l1, flags);

RW locks + irq

• All CPU

• Busy wait and no interrup.:

• NOT sleep, sched., etc. on Critial

Section (C.S.)

read_lock_irqsave();
read_lock_irqrestore();

write_lock_irqsave();
write_lock_irqrestore();

Alejandro Calderón Mateos

Chained execution of event treatment

ARCOS @ UC3M120

Event in execution
Event that

comes
Usual treatment

Hw. Int. /

exception

Hw. Int. /

exception

• Always allowed, never or only more priority ones (if

C.S. then disabled).

Sys. call /

Sw. Int.

Hw. Int. /

exception
• Interruptible always (if C.S. then disabled).

Hw. Int. /

exception

Sys. call /

Sw. Int.
• Can not be interruptible.

Sys. call /

Sw. Int.

Sys. call /

Sw. Int.

• Non-preemptible Kernel
• Non-interruptible (queued).

• Old UNIX and Linux some time ago.

• Preemptible Kernel.
• Critical sections must be protected.

• Solaris, Windows 2000, etc.

Alejandro Calderón Mateos

Chained execution of event treatment
Linux

ARCOS @ UC3M121

Kernel Control Path UP protection *MP Protection

Exceptions Mutex -

Hw. Int. Deshabilitar Int. Spin Lock

Sw. Int. - Spin Lock (SoftIrq, N Tasklets)

Exceptions + Hw. Int. Deshabilitar Int. Spin Lock

Exceptions + Sw. Int. Encolar Sw. Int. Spin Lock

Hw. Int. + Sw. Int. Deshabilitar Int. Spin Lock

Exc. + Int HW. + Sw. Int. Deshabilitar Int. Spin Lock

Understanding the Linux Kernel (página 218)

Alejandro Calderón Mateos

Overview

ARCOS @ UC3M122

▶Introduction

▶How an operating system works
▶System boot
▶Characteristics and event handling
▶Kernel process

▶Other aspects
▶Events concurrency
▶Add new system functionalities

Alejandro Calderón Mateos

Context…

ARCOS @ UC3M123

U
K

Soft. int.
System

call

Hw.
int.

Excep.

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

Internal operation of the kernel divided

among: software interrupts, system calls,

exceptions, and hardware interruptions

Process

Alejandro Calderón Mateos

Device

Alejandro Calderón Mateos

Context…

ARCOS @ UC3M124

U
K

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

An operating system functionality (existing

or to be added) is distributed in different

locations, in the code of different event

handling routines...

Alejandro Calderón Mateos

Soft. int.
System

call

Hw.
int.

Excep.

Process

Device

Alejandro Calderón Mateos

Context…

ARCOS @ UC3M125

U
K

clock() { ticks++ … }
hw1() { … }

ex1() { … }
exX() { … }

LLS() { … }
IS() { … }

system_lib

A functionality is a sequence of tasks:

● They can occur at different times,

they are assigned to the corresponding

context (event handler, kernel process).

● They share data through global structures.

Alejandro Calderón Mateos

• Request block
• Execute Pi+1
• Copy to RAM
• Act. soft. int.
• Pi ready

Request a disk block

Soft. int.
System

call

Hw.
int.

Excep.

Process

Device

Alejandro Calderón Mateos

Decision tree for matching the execution

context for a new action

ARCOS @ UC3M126

Action is related to a synchronous or asynchronous event?
synchronous

(exception or system call)

▶ To include it in the
event routine
(exc. or sys. call)

asynchronous
(Int. HW & Sw. Int.)

critical

Action is critical?
no

▶ To include it in the
interrupts routine

Action requires to get blocked?
yes

no

▶ To include it in the
software interrupt

▶ It will be execute within
a kernel process

Lesson 2
How an operating system works

Group ARCOS

Operating System Design

Degree in Computer Science and Engineering

Universidad Carlos III de Madrid

