
Lesson 3a
process, devices, drivers, and extended services

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid

Alejandro Calderón Mateos

Recommended readings

2

1. Carretero 2007:
1. Cap.7

1. Tanenbaum 2006(en):
1. Cap.3

1. Stallings 2005(en):
1. Parte tres

1. Silberschatz 2006:
1. Cap. Sistemas Module

Base Recommended

ARCOS @ UC3M

Alejandro Calderón Mateos

To remember…

ARCOS @ UC3M3

1. To prepare and review the class explanations.
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.

Alejandro Calderón Mateos

General context…

ARCOS @ UC3M4

Process
mgmt.

Driver
mgmt.

Introduction

Alejandro Calderón Mateos

Overview

5

▶Processes

▶Peripheral

ARCOS @ UC3M

Peripheral

Kernel

Services

Process ShellProcesses

Users

Operating

System

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Alejandro Calderón Mateos

Overview

6

▶Processes

▶Peripheral

ARCOS @ UC3M

Peripheral

Kernel

Services

Process ShellProcesses

Users

Operating

System

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Alejandro Calderón Mateos

Introduction

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M7

Process

kernel

Alejandro Calderón Mateos

Introduction

▶Process concept

ARCOS @ UC3M8

Process

Alejandro Calderón Mateos

Process concept

▶Process
▶Programm in execution
▶Processing unit managed by the Operating System (O.S.)

ARCOS @ UC3M9

1
2

Disk

CPU

Memory

App 1

Alejandro Calderón Mateos

Introduction

▶Process concept
▶Proposed model

ARCOS @ UC3M10

Process

Alejandro Calderón Mateos

Proposed model

▶Associated resources
▶Areas of memory
▶At least: code, data, and stack

▶Open files
▶Signals

ARCOS @ UC3M11

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Disk

CPU

Memory

Alejandro Calderón Mateos

Proposed model

▶Multiprogramming
▶ Several applications loaded in main memory
▶ If one blocks because request some slow I/O then

another is executed until this new one get blocket too
▶ Voluntary Context Switching (V.C.S.)

▶ Efficiency in the use of the processor.
▶ Degree of multiprogramming = number of applications loaded in main memory

ARCOS @ UC3M12

CPU

Memory

App 1

App 2

App 3

App1
App2

App3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Proposed model

▶Isolation / Sharing
▶Private address space per application, but
▶Possibility of communicating data between two applications
▶Message passing
▶Sharing memory

ARCOS @ UC3M13

CPU

Memory

App 1

App 2

App 3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Proposed model

▶Process hierarchy
▶Create process

▶As a copy of another existing process
▶From a application on disk
▶As boot process

▶Group of processes that share the same treatment
ARCOS @ UC3M14

CPU

Memory

App 1

App 2

App 3
App1 App2

App3

App0

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Proposed model

▶Multitasking
▶Each process is executed a quantum of time (E.g .: 5 ms),

and the turn is rotated to execute another ready processes
▶Involuntary Context Switching (I.C.S.)

▶Sharing the use of the processor
▶It seems that everything is running at the same time

ARCOS @ UC3M15

CPU

Memory

App 1

App 2

App 3

App1 App2 App3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Proposed model

▶Multiprocess
▶Several processors are available (multicore / multiprocessor)
▶In addition to the distribution of each CPU (multitasking), there is

real parallelism between several tasks (as many as processors)
▶ It usually uses a scheduler and data structures per processor,

with some load balancing mechanism

ARCOS @ UC3M16

Memory

App 1

App 2

App 3

App1 App2 App3

CPU
•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Introduction

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M17

Process

kernel

Alejandro Calderón Mateos

Implications in the operating system

ARCOS @ UC3M18

Requirements Information (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation /

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the

message queue

• API for concurrency control (access to data

structures)

o Hierarchy of

processes

• Family relationship

• Related sets of processes

• Processes from the same session

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

1. Data structures

Alejandro Calderón Mateos

Implications in the operating system

1. Data structures

ARCOS @ UC3M19

kernel

Alejandro Calderón Mateos

Implications in the operating system

ARCOS @ UC3M20

Requirements Information (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation /

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the

message queue

• API for concurrency control (access to data

structures)

o Hierarchy of

processes

• Family relationship

• Related sets of processes

• Processes from the same session

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

2. Functions: internal management

Alejandro Calderón Mateos

Implications in the operating system

2. Functions: internal management

ARCOS @ UC3M21

kernel

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.

Alejandro Calderón Mateos

Implications in the operating system

3. Functions: services

ARCOS @ UC3M22

kernel

▶ Create process

▶ Destroy process

▶ Change process image

▶ Wait to other process' end

▶ Etc.

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.

Alejandro Calderón Mateos

Implications in the operating system

3. Functions: service API

ARCOS @ UC3M23

kernel

▶ Create process

▶ Destroy process

▶ Change process image

▶ Wait to other process' end

▶ Etc.

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.

▶ fork, exit, exec, wait, …

▶ pthread_create, pthread…

Alejandro Calderón Mateos

Introduction
summary

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M24

Process

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Alejandro Calderón Mateos

Main data structures

ARCOS @ UC3M25

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Alejandro Calderón Mateos

Information in the operating system

ARCOS @ UC3M26

Physical memory

App 1

App 2

App 3

Process table

Memory table

I/O table

Files table
O.S. tables

Alejandro Calderón Mateos

Information associated with a process

ARCOS @ UC3M27

Physical memory

App 1

App 2

App 3

Process table

Memory table

I/O table

Files table
O.S. tables

Process table

PCB
(1)

PCB
(2)

PCB
(3)

…

Alejandro Calderón Mateos

PCB: Process Table unit

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M28

St
at

e
Id

.
M

gm
r.

▶ Process Control Block (PCB / PCB)
▶ Data structure with all related information needed for the

management of a particular process

▶ Manifestation of a process in the kernel

▶ Thread Control Block (TCB / BCT)
▶ Similar to PCB for each thread in the process

Process table

PCB
(1)

PCB
(2)

PCB
(3)

…

Alejandro Calderón Mateos

PCB: Process Table unit

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M29

St
at

e
Id

.
M

gm
r.

▶ Process Identification (PID)
▶ Identification used by users

▶ Use to be a positive number of 16 bits (32767)
dynamically assigned, reused not immediately

▶ Address of process descriptor (APD)
▶ Identification within the kernel

▶ Use to be a translation PID -> APD (E.g.: hash)

Process table

PCB
(1)

PCB
(2)

PCB
(3)

…

Alejandro Calderón Mateos

Where?: information of a process

ARCOS @ UC3M30

Process table

Memory table

I/O table

Files table

Process table

PCB
(1)

PCB
(2)

PCB
(3)

…

▶The information of a process in on its PCB…

▶But some Information is outside PCB:
▶Because better efficiency

▶In order to share information among process

▶Examples:
▶Table of memory segments and pages
▶Table of file placeholder
▶List of requests to devices

Alejandro Calderón Mateos

Where?: information of a process

▶Table of file position pointer
(seek pointer):

▶ Describe the read/write position of
open files.

▶ In order to share the state of the file
among process, this part has to be
external to PCB.

▶ The PCB contains the index of the
element in the table that contains
the information of the open file: the
i-node, and the seek position.

ARCOS @ UC3M31 Sistemas operativos: una visión aplicada

Alejandro Calderón Mateos

Process information
summary

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M32

▶ Memory management
▶ Pointer to the code segment

▶ Pointer to the data segment

▶ Pointer to the stack segment

▶ File management
▶ Root directory

▶ Work directory

▶ File descriptors

▶ User identification

▶ Group identification

St
at

e
Id

.
M

gm
r.

PCB

Alejandro Calderón Mateos

Information of a process
Linux

ARCOS @ UC3M33

task_struct (Process Descriptor)

tty_struct (communications)

signal_struct (signals)

fs_struct (directory name space)

files_struct (Open Files)

stack + thread_info (low_level scheduling)

mm_struct (memory)

sighand_struct (signal handers)

Understanding the Linux Kernel (O'Really)
http://www.eecs.harvard.edu/~cs161/assignments/sched.h.html

process hierarchy info

…

state (runability)
stack

pid hash table

scheduling info
debugging support
state (exit status)

pid and tgid
mm

credentials
fs

files
signal

sighand

Alejandro Calderón Mateos

Operating System Services
Initialization and completion of processes.

ARCOS @ UC3M34

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Alejandro Calderón Mateos

Create process

▶A process is created:

▶During system boot
▶Kernel threads + first process (E.g.: init, swapper, etc.)

▶When one process performs a system call to create another
process:
▶When the operating system starts a new work
▶When an user starts a new application
▶When an running application needs a new process

ARCOS @ UC3M35 CS 6560 Operating System Design (lesson 4: processes)

Alejandro Calderón Mateos

Destroy a process

▶A process ends:

▶In a voluntary way:
▶Normal ending
▶Ending by error

▶In a non-voluntary way:
▶End by system (E.g.: exception, no available resources, etc.)
▶End by another process (E.g.: through a ‘kill’ system call)
▶End by user (E.g.: press Ctrl-C in the keyboard)

ARCOS @ UC3M36 CS 6560 Operating System Design (lesson 4: processes)

▶ In Unix/Linux signals are used as mechanism
▶Signals can be captured and handled (but SIGKILL) to avoid some non-voluntary ways of ending

Alejandro Calderón Mateos

Creation and termination of processes
System calls

▶Linux

▶Windows

ARCOS @ UC3M37 Sistemas operativos: una visión aplicada

clone()

exec() exit()

wait()

padre

hijo

CreateProcess()

ExitProcess()

GetExitCodeProcess()

padre

hijo

Alejandro Calderón Mateos

Operating System Services
Initialization and completion of processes.

ARCOS @ UC3M38

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Alejandro Calderón Mateos

Create process
Linux: clone

ARCOS @ UC3M39

Copy PCB from father

clone:

Duplicate M. map from father
(including stacks)

State ← Ready
Context ← end_fork()
PCB in ready queue

Other updates: e.g., clean
signals, events and pending
messages

Return PID to father Return 0 to son

“Clone the father
process and gives a
new identity to the son”

Find a free entry in the Process Table

Stack initial PC

*

Alejandro Calderón Mateos

Change process image
Linux: exec

ARCOS @ UC3M40

exec:

“Change the memory image
of a process using as a
previous one as ‘container’”

Free the M. image of
the process

Read executable

Build a new M. image
M → PCB

Load .text and .data
sections

Create initial U stack
Create S stack: initial
address of application

Setup PCB: regs.;
PC ← O.S. address; RETI

Other actions: signal
management, SETUID, etc.

Alejandro Calderón Mateos

Destroy process
Linux: exit

ARCOS @ UC3M41

exit:

“It ends the execution of
a process and release its
associated resources”

Ends all threads but one

Clean asynchronous pending actions,
alarms and pending signals

Close all file descriptors

Free active locks and semaphores

re-assign orphans to init

Process state <- zombie

Send the SIGCLD signal to its father:

Does respond:
freeproc(): free P and M

Does NOT respond:

keep signal

Alejandro Calderón Mateos

Create process
Windows: CreateProcess

ARCOS @ UC3M42 http://flylib.com/books/en/4.491.1.52/1/

crea EPROCESS

crea esp. M inicial proc.

crea KPROCESS

crea PEB crea pila thread

crea contexto thread

crea thread y queda suspendido

Kernel32.dll: mensaje a

Win32: manejadores; flags;

PID padre

≈ activa el primer thread del

proceso

[IW2K: 315]: 12 pasos

thread inicial: comienza

ejecución en contexto nuevo

proceso

construye: contexto and stack

inicial del thread:

-IRQL ← APC

-- encola APC: loader, heap

manager, etc

--baja a IRQL ← 0: hace APC

--...

-- se pone en modo U

Alejandro Calderón Mateos

Overview

43

▶Processes

▶Peripheral

ARCOS @ UC3M

Peripheral

Kernel

Services

Process ShellProcesses

Users

Operating

System

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Alejandro Calderón Mateos

Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M44

Peripheral

Transfer unit

kernel

Alejandro Calderón Mateos

Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M45

Peripheral

Transfer unit

kernel

Alejandro Calderón Mateos

Concept of peripheral

46

▶Peripheral:

▶All external element connected
to a CPU through the
Input/Output (I/O) modules.

▶They let store information or
communicate the computer with
the exterior world.

Peripherals

ARCOS @ UC3M

Alejandro Calderón Mateos

Peripheral classification (by usage)

47

▶Communication:
▶Human - machine

◻ (Terminal) keyboard, mouse, …
◻ (Printed) plotter, scanner, …

▶Machine - machine (Módem, …)

▶Physical environment - machine
◻ (Read/accionamiento) x (analogic/digital)

▶Storage:
▶Direct access (Disks, DVD, …)
▶Sequential access (Tapes)

ARCOS @ UC3M

Alejandro Calderón Mateos

Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M48

Peripheral

Transfer unit

kernel

Alejandro Calderón Mateos

General structure of a peripheral

49

▶ Compound of:

▶ Device
▶Hardware that interacts with the

environment

▶ I/O module
▶Also known as controller

▶ Interface between the device and
the CPU, which hides the
particularities of this

Device

I/O

Module

Peripheral

Peripheral = Device + I/O module

ARCOS @ UC3M

Alejandro Calderón Mateos

I/O module
What are they

50

▶The I/O module makes the connection between the CPU
and the device.

Device

I/O

Module

Memory

…

Bus

ARCOS @ UC3M

Alejandro Calderón Mateos

I/O module
necessity

51

▶There are necessary because:
▶Many types peripherals.

▶Peripherals use to be ‘weird’

▶The data transfer speed of the peripherals use to be
smaller than memory or processor (CPU).
▶Peripherals use to be ‘slower’

▶Data formats and data sizes from the peripherals could be
different to the ones used in the computer that are connected.

Device

I/O

Module

Peripheral

ARCOS @ UC3M

Alejandro Calderón Mateos

I/O module
structure: interface

52

Interaction between CPU and I/O Module through:
▶3 types of registers:
▶Control register

▶ Request for the peripheral

▶ State register
▶ Result of the last request performed

▶Data register
▶ Interchange data between CPU/peripheral

▶1 type of interrupt line:
▶Notification interrupt

Control
State
Data

0x0501
0x0502
0x0503

I/O Module

I/O logic

external

device

logic

external

device

logic

…

data

state

controldata

state

control

ARCOS @ UC3M

INT

Alejandro Calderón Mateos

INT

I/O Module

I/O module
characteristics to know

53

▶Important aspects:

▶Addressing:

▶Memory-mapped, Port-mapped

▶Transfer unit:

▶Character, block

▶ Interaction
computador-controlador:

▶Direct, Interrupted, DMA

Control
State
Data

0x0501
0x0502
0x0503

I/O logic

external

device

logic

external

device

logic

…

data

state

controldata

state

control

ARCOS @ UC3M

Alejandro Calderón Mateos

(1/3) Addressing Module

54

▶Memory-mapped I/O
▶The I/O module registers are ‘projected’ into the main

memory space and a memory area is used to associate
address to I/O module + register of this module.

▶E.g.: int * rctrl = 0x105A ;
(*rctl) = 1 ;

▶ Port-mapped I/O
▶With special assembler instructions (In / Out) you access

the I/O module registers as special addresses (called ports).
▶E.g.: out(0x105A, 1) ;

Mem
.

I/O

Mem
.

I/O

ARCOS @ UC3M

Control
State
Data

0x0501
0x0502
0x0503

Alejandro Calderón Mateos

(2/3) Transfer unit

55

▶ Block device:
▶Unit: blocks of bytes
▶Access: sequential or direct
▶Actions: read, write, situarse, …
▶Examples: tapes and disk

▶ Character device:
▶Unit: characters (ASCII, Unicode, etc.)
▶Access: sequential
▶Actions: get, put, ….

▶Example: terminals, printers, etc.

ARCOS @ UC3M

Control
State
Data

0x0501
0x0502
0x0503

Alejandro Calderón Mateos

(3/3) Interaction with computer

56

▶Direct I/O
▶CPU does all I/O: busy wait → transfer

▶ Interrupted I/O
▶CPU does not wait, only transfer data

▶DMA I/O (direct memory access)
▶CPU neither wait, nor transfer, it is notified at the end of data transfers
◻ I/O module is more sophisticated (cost more, better performance)
◻ Try to reduce the overheat when transfering blocks of data

‘polling’

ARCOS @ UC3M

INTControl
State
Data

0x0501
0x0502
0x0503

I/O logic

Alejandro Calderón Mateos

Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M57

Peripheral

Transfer unit

kernel

Alejandro Calderón Mateos

Implications in the operating system

1. Data structures

ARCOS @ UC3M58

kernel

Alejandro Calderón Mateos

Implications in the operating system

2. Functions: internal management

ARCOS @ UC3M59

kernel

▶ Request

▶ [Interrupt]

Alejandro Calderón Mateos

Implications in the operating system

3. Functions: services

ARCOS @ UC3M60

kernel

▶ Locate-driver

▶ Open work session

▶ Write (request)

▶ Read (read response)

▶ Close work session

▶ Request

▶ Interrupt

Alejandro Calderón Mateos

Implications in the operating system

3. Functions: service API

ARCOS @ UC3M61

kernel

▶ Locate-driver

▶ Open work session

▶ Write (request)

▶ Read (read response)

▶ Close work session

▶ Request

▶ Interrupt

▶ …

Alejandro Calderón Mateos

Implications in the operating system

(1 + 2) Data structures + internal mgmt. functions = driver

ARCOS @ UC3M62

kernel

▶ Request

▶ Interrupt

Alejandro Calderón Mateos

▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System

of the device handling

63 ARCOS @ UC3M

Alejandro Calderón Mateos

Example
Direct I/O

64

Memory
Bus

I/OI/OI/OI/O

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
Direct I/O

65

request:
for (i=0; i<100;i++)

{

// read request

out(0x500, 0) ;

// wait loop (busy wait)

do {

in(0x508, &(p.status)) ; // ready?

} while (0 == (p.status)) ;

// read data

in(0x50C, &(p.data[i])) ;

}

Control 1
Control 2

State
0x0500
0x0504
0x0508

I/O Module

Data
0x050C

▶ Control 1 information
▶ 0: read
▶ 1: write

▶ State information
▶ 0: busy device
▶ 1: device ready (data available)

▶ Data
▶ Data from device

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
Direct I/O

66

for (i=0; i<100;i++) {

out(0x500,0) ;

do {

in(0x508,&p.status) ;

} while (0 == p.status) ;

in(0x50C,&p.data[i]) ;

}

k
// read(file,data,100) ;
…

P1

// read(file,data,100) ;
… // next instruction

P1

ARCOS @ UC3M

Alejandro Calderón Mateos

▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System

of the device handling

67 ARCOS @ UC3M

Alejandro Calderón Mateos

Example
Interrupted I/O

68

Memory
Bus

INT
I/OI/OI/OI/O

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
Interrupted I/O

69

INT_05:
in(0x508, &(p.status)) ; // read state

in(0x50C, &(p.data[p.counter])) ; // read data

if ((p.counter < p.neltos) && (p.status == OK)) {

p.counter++ ;

out(0x500, 0) ; // read

} else { // process->state = ready }

ret_int # restore registers & return

request:

// read request
p.counter = 0;
p.neltos = 100;
out(0x500, 0) ; // read

// Voluntary context switching (V.C.S.)

Control 1
Control 2

State
0x0500
0x0504
0x0508

I/O Module

Data
0x050C

▶ Control 1 information
▶ 0: read
▶ 1: write

▶ State information
▶ 0: busy device
▶ 1: device ready (data available)

▶ Data
▶ Data from device

ARCOS @ UC3M

Alejandro Calderón Mateos

P2

Example
Interrupted I/O

70

// request data (out)

// block proc. (state, lists, etc.)

// execute another ready proc.

// read(file,data,100) ;
…

k

…P2
INT_05: // read data (in)

INT_05: // read last data
// proc.->state = ready

k

k
// read(file,data,100) ;
…

P1

INT_05: // read data (in) k
P2

P1

…

ARCOS @ UC3M

Alejandro Calderón Mateos

▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System

of the device handling

71 ARCOS @ UC3M

Alejandro Calderón Mateos

Example
DMA I/O

72

Memory
Bus

INT

I/O
DMA

I/O

BUSACK

BUSRQ

Coordination between CPU and I/O Modules
in order to access to memory

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
DMA I/O

73

Memory
Bus

INT

I/O
DMA

I/O

BUSACK

BUSRQ

Each data transferred to memory implies:
• To ask permission for accessing memory (BUSRQ)
• To wait permission grant (BUSACK)
• To transfer to memory
• To disable request permission (BUSRQ)

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
DMA I/O

74

Memory
Bus

INT

I/O
DMA

I/O

BUSACK

BUSRQ

Once all data has been transferred:
• Fire an interrupt (INT) to notify the CPU

ARCOS @ UC3M

Alejandro Calderón Mateos

Example
DMA I/O

75

request:

// perform block request

out(0x500,0) ; // read

out(0x504,p.data) ; // vector address

out(0x508,100) ; // # eltos

// Voluntary Context Switching (V.C.S.)

INT_05: // read state y data
in(0x50C, &status) ;

if (p.status…

// process->state = ready
ret_int # restore registers & return

0x0500
0x0504
0x0508

I/O Module

0x050C

▶ Control 1 information

▶ 0: read, 1: write

▶ Control 2 information

▶ Memory address.

▶ Control 3 information

▶ Number of elements

▶ State information

▶ 0: busy device

▶ 1: device ready (data available)

▶ Data

▶ Data from device

ARCOS @ UC3M

Control 1
Control 2
Control 3

State
Data

0x0510

Alejandro Calderón Mateos

Example
DMA I/O

76

// request data (out)

// block proc. (state, lists, etc.)

// execute another ready proc.

// read(file,data,100) ;
…

k

P1

…

P2

INT_05: // DMA ends
// proc.->state = ready

k
// read(file,data,100) ;
…

P1

ARCOS @ UC3M

Alejandro Calderón Mateos

Main types of protocols

▶Request -> individual response
▶Most devices

▶Only request
▶ E.g.: graphic card
▶Direct I/O (faster or real-time)

▶Only response
▶ E.g.: clock
▶ Interrupted I/O (fire data without former request)

▶Request -> shared response
▶ E.g.: hard disk

ARCOS @ UC3M77

Lesson 3a
process, devices, drivers, and extended services

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid

