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To remember…

ARCOS @ UC3M3

1. To prepare and review the class explanations. 
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.
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General context…

ARCOS @ UC3M4

Process 
mgmt.

Driver 
mgmt.

Introduction
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Overview
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▶Processes

▶Peripheral

ARCOS @ UC3M
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Overview
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▶Processes

▶Peripheral

ARCOS @ UC3M

Peripheral

Kernel

Services

Process ShellProcesses

Users

Operating 

System

H
ar

d
w

ar
e

S
o
ft

w
ar

e



Alejandro Calderón Mateos

Introduction

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M7

Process

kernel
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Introduction

▶Process concept

ARCOS @ UC3M8

Process
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Process concept 

▶Process
▶Programm in execution
▶Processing unit managed by the Operating System (O.S.)

ARCOS @ UC3M9
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Disk

CPU
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App 1
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Introduction

▶Process concept
▶Proposed model
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Process
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Proposed model

▶Associated resources
▶Areas of memory
▶At least: code, data, and stack

▶Open files
▶Signals

ARCOS @ UC3M11

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess

Disk

CPU

Memory
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Proposed model

▶Multiprogramming
▶ Several applications loaded in main memory 
▶ If one blocks because request some slow I/O then

another is executed until this new one get blocket too
▶ Voluntary Context Switching (V.C.S.)

▶ Efficiency in the use of the processor.
▶ Degree of multiprogramming = number of applications loaded in main memory

ARCOS @ UC3M12

CPU

Memory

App 1

App 2

App 3

App1
App2

App3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Proposed model

▶Isolation / Sharing
▶Private address space per application, but
▶Possibility of communicating data between two applications
▶Message passing
▶Sharing memory

ARCOS @ UC3M13

CPU

Memory

App 1

App 2

App 3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Proposed model

▶Process hierarchy
▶Create process

▶As a copy of another existing process
▶From a application on disk 
▶As boot process

▶Group of processes that share the same treatment
ARCOS @ UC3M14

CPU

Memory

App 1

App 2

App 3
App1 App2

App3

App0

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Proposed model

▶Multitasking
▶Each process is executed a quantum of time (E.g .: 5 ms),

and the turn is rotated to execute another ready processes
▶Involuntary Context Switching (I.C.S.)

▶Sharing the use of the processor
▶It seems that everything is running at the same time

ARCOS @ UC3M15

CPU

Memory

App 1
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•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Proposed model

▶Multiprocess
▶Several processors are available (multicore / multiprocessor)
▶In addition to the distribution of each CPU (multitasking), there is 

real parallelism between several tasks (as many as processors)
▶ It usually uses a scheduler and data structures per processor,

with some load balancing mechanism

ARCOS @ UC3M16

Memory

App 1

App 2

App 3

App1 App2 App3

CPU
•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Introduction

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M17

Process

kernel
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Implications in the operating system

ARCOS @ UC3M18

Requirements Information  (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation / 

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the 

message queue

• API for concurrency control (access to data 

structures)

o Hierarchy of 

processes

• Family relationship

• Related sets of processes

• Processes from the same session 

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

1. Data structures



Alejandro Calderón Mateos

Implications in the operating system

1. Data structures

ARCOS @ UC3M19

kernel
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Implications in the operating system

ARCOS @ UC3M20

Requirements Information  (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation / 

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the 

message queue

• API for concurrency control (access to data 

structures)

o Hierarchy of 

processes

• Family relationship

• Related sets of processes

• Processes from the same session 

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

2. Functions: internal management
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Implications in the operating system

2. Functions: internal management

ARCOS @ UC3M21

kernel

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.
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Implications in the operating system

3. Functions: services

ARCOS @ UC3M22

kernel

▶ Create process

▶ Destroy process

▶ Change process image

▶ Wait to other process' end

▶ Etc.

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.
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Implications in the operating system

3. Functions: service API 

ARCOS @ UC3M23

kernel

▶ Create process

▶ Destroy process

▶ Change process image

▶ Wait to other process' end

▶ Etc.

▶ States and
context switching

▶ Processes queues

▶ Scheduling

▶ Etc.

▶ fork, exit, exec, wait, …

▶ pthread_create, pthread…
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Introduction
summary

▶Process concept
▶Proposed model
▶Implications in the O.S.

ARCOS @ UC3M24

Process

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …
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Main data structures

ARCOS @ UC3M25

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …



Alejandro Calderón Mateos

Information in the operating system

ARCOS @ UC3M26

Physical memory

App 1

App 2

App 3

Process table

Memory table

I/O table

Files table
O.S. tables
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Information associated with a process

ARCOS @ UC3M27

Physical memory

App 1

App 2

App 3

Process table

Memory table

I/O table

Files table
O.S. tables

Process table

PCB 
(1)

PCB 
(2)

PCB 
(3)

…
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PCB: Process Table unit

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M28
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▶ Process Control Block (PCB / PCB)
▶ Data structure with all related information needed for the 

management of a particular process

▶ Manifestation of a process in the kernel

▶ Thread Control Block (TCB / BCT)
▶ Similar to PCB for each thread in the process

Process table

PCB 
(1)

PCB 
(2)

PCB 
(3)

…
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PCB: Process Table unit

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M29
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▶ Process Identification (PID)
▶ Identification used by users

▶ Use to be a positive number of 16 bits (32767) 
dynamically assigned, reused not immediately

▶ Address of process descriptor (APD)
▶ Identification within the kernel 

▶ Use to be a translation PID -> APD (E.g.: hash)

Process table

PCB 
(1)

PCB 
(2)

PCB 
(3)

…
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Where?: information of a process

ARCOS @ UC3M30

Process table

Memory table

I/O table

Files table

Process table

PCB 
(1)

PCB 
(2)

PCB 
(3)

…

▶The information of a process in on its PCB…

▶But some Information is outside PCB:
▶Because better efficiency 

▶In order to share information among process 

▶Examples:
▶Table of memory segments and pages 
▶Table of file placeholder
▶List of requests to devices
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Where?: information of a process

▶Table of file position pointer 
(seek pointer):

▶ Describe the read/write position of 
open files.

▶ In order to share the state of the file 
among process, this part has to be 
external to PCB.

▶ The PCB contains the index of the 
element in the table that contains 
the information of the open file: the 
i-node, and the seek position.

ARCOS @ UC3M31 Sistemas operativos: una visión aplicada
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Process information
summary

▶ Process management
▶ General purpose registers

▶ Program counter

▶ State register

▶ Stack pointer

▶ Process identification

▶ Father process

▶ Process group

▶ Priority

▶ Scheduler params

▶ Signals

▶ Timestamp when execution started

▶ Time of CPU used

▶ Time to next alarm

ARCOS @ UC3M32

▶ Memory management
▶ Pointer to the code segment

▶ Pointer to the data segment

▶ Pointer to the stack segment

▶ File management
▶ Root directory

▶ Work directory

▶ File descriptors

▶ User identification

▶ Group identification

St
at

e
Id

.
M

gm
r.

PCB
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Information of a process
Linux

ARCOS @ UC3M33

task_struct (Process Descriptor)

tty_struct (communications)

signal_struct (signals)

fs_struct (directory name space)

files_struct (Open Files)

stack + thread_info (low_level scheduling)

mm_struct (memory)

sighand_struct (signal handers)

Understanding the Linux Kernel (O'Really)
http://www.eecs.harvard.edu/~cs161/assignments/sched.h.html

process hierarchy info

…

state (runability)
stack

pid hash table

scheduling info
debugging support
state (exit status)

pid and tgid
mm

credentials
fs

files
signal

sighand
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Operating System Services
Initialization and completion of processes.

ARCOS @ UC3M34

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …
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Create process

▶A process is created: 

▶During system boot
▶Kernel threads + first process (E.g.: init, swapper, etc.)

▶When one process performs a system call to create another 
process: 
▶When the operating system starts a new work
▶When an user starts a new application
▶When an running application needs a new process

ARCOS @ UC3M35 CS 6560 Operating System Design (lesson 4: processes)
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Destroy a process

▶A process ends: 

▶In a voluntary way:
▶Normal ending 
▶Ending by error 

▶In a non-voluntary way: 
▶End by system (E.g.: exception, no available resources, etc.)
▶End by another process (E.g.: through a ‘kill’ system call)
▶End by user (E.g.: press Ctrl-C in the keyboard)

ARCOS @ UC3M36 CS 6560 Operating System Design (lesson 4: processes)

▶ In Unix/Linux signals are used as mechanism 
▶Signals can be captured and handled (but SIGKILL) to avoid some non-voluntary ways of ending
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Creation and termination of processes
System calls

▶Linux

▶Windows

ARCOS @ UC3M37 Sistemas operativos: una visión aplicada

clone()

exec() exit()

wait()

padre

hijo

CreateProcess()

ExitProcess()

GetExitCodeProcess()

padre

hijo
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Operating System Services
Initialization and completion of processes.

ARCOS @ UC3M38

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …
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Create process
Linux: clone

ARCOS @ UC3M39

Copy PCB from father

clone:

Duplicate    M. map from father 
(including stacks)

State ← Ready
Context ← end_fork()
PCB in ready queue

Other updates: e.g., clean 
signals, events and pending 
messages

Return PID to father Return 0 to son

“Clone the father 
process and gives a 
new identity to the son”

Find a free entry in the Process Table

Stack initial PC

*
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Change process image
Linux: exec

ARCOS @ UC3M40

exec:

“Change the memory image 
of a process using as a 
previous one as ‘container’”

Free the M. image of 
the process

Read executable

Build a new M. image 
M → PCB 

Load .text and .data 
sections

Create initial U stack
Create S stack: initial 
address of application

Setup PCB: regs.;     
PC ← O.S. address;  RETI

Other actions: signal 
management, SETUID, etc.
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Destroy process
Linux: exit

ARCOS @ UC3M41

exit:

“It ends the execution of 
a process and release its 
associated resources”

Ends all threads but one

Clean asynchronous pending actions, 
alarms and pending signals

Close all file descriptors

Free active locks and semaphores

re-assign orphans to init

Process state <- zombie

Send the SIGCLD signal to its father:

Does respond:
freeproc(): free P and M

Does NOT respond: 

keep signal
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Create process
Windows: CreateProcess

ARCOS @ UC3M42 http://flylib.com/books/en/4.491.1.52/1/

crea EPROCESS

crea esp. M inicial proc.

crea KPROCESS

crea PEB crea pila thread

crea contexto thread

crea thread y queda suspendido

Kernel32.dll: mensaje a 

Win32: manejadores;  flags; 

PID padre

≈ activa el primer thread del 

proceso

[IW2K: 315]: 12 pasos

thread inicial: comienza 

ejecución en contexto nuevo 

proceso 

construye: contexto and stack 

inicial del thread:

-IRQL ← APC

-- encola APC: loader, heap 

manager, etc

--baja a IRQL ← 0: hace APC

--...

-- se pone en modo U
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Overview

43

▶Processes

▶Peripheral 

ARCOS @ UC3M

Peripheral

Kernel

Services

Process ShellProcesses

Users

Operating 

System
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Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M44

Peripheral

Transfer unit

kernel
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Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M45

Peripheral

Transfer unit

kernel
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Concept of peripheral

46

▶Peripheral:

▶All external element connected 
to a CPU through the  
Input/Output (I/O) modules.

▶They let store information or 
communicate the computer with
the exterior world.

Peripherals

ARCOS @ UC3M
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Peripheral classification (by usage)

47

▶Communication: 
▶Human - machine

◻ (Terminal)  keyboard, mouse, …
◻ (Printed) plotter, scanner, …

▶Machine - machine (Módem, …)

▶Physical environment - machine 
◻ (Read/accionamiento) x (analogic/digital)

▶Storage: 
▶Direct access (Disks, DVD, …)
▶Sequential access (Tapes)

ARCOS @ UC3M
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Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M48

Peripheral

Transfer unit

kernel
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General structure of a peripheral

49

▶ Compound of: 

▶ Device
▶Hardware that interacts with the 

environment

▶ I/O module
▶Also known as controller

▶ Interface between the device and 
the CPU, which hides the 
particularities of this

Device

I/O 

Module

Peripheral

Peripheral = Device + I/O module

ARCOS @ UC3M
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I/O module 
What are they

50

▶The I/O module makes the connection between the CPU 
and the device.

Device

I/O 

Module

Memory

…

Bus

ARCOS @ UC3M
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I/O module
necessity

51

▶There are necessary because:
▶Many types peripherals.

▶Peripherals use to be ‘weird’

▶The data transfer speed of the peripherals use to be 
smaller than memory or processor (CPU).
▶Peripherals use to be ‘slower’ 

▶Data formats and data sizes from the peripherals could be 
different to the ones used in the computer that are connected.

Device

I/O 

Module

Peripheral

ARCOS @ UC3M
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I/O module 
structure: interface

52

Interaction between CPU and I/O Module through:
▶3 types of registers:
▶Control register

▶ Request for the peripheral 

▶ State register
▶ Result of the last request performed 

▶Data register
▶ Interchange data between CPU/peripheral

▶1 type of interrupt line:
▶Notification interrupt

Control
State
Data

0x0501
0x0502
0x0503

I/O Module

I/O logic

external 

device 

logic

external 

device 

logic

…

data

state

controldata

state

control

ARCOS @ UC3M

INT



Alejandro Calderón Mateos

INT

I/O Module

I/O module 
characteristics to know

53

▶Important aspects:

▶Addressing:

▶Memory-mapped, Port-mapped

▶Transfer unit:

▶Character, block

▶ Interaction 
computador-controlador:

▶Direct, Interrupted, DMA

Control
State
Data

0x0501
0x0502
0x0503

I/O logic

external 

device 

logic

external 

device 

logic

…

data

state

controldata

state

control

ARCOS @ UC3M
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(1/3) Addressing Module

54

▶Memory-mapped I/O
▶The I/O module registers are ‘projected’ into the main 

memory space and a memory area is used to associate 
address to I/O module + register of this module.

▶E.g.:   int * rctrl = 0x105A ;  
(*rctl) = 1 ;

▶ Port-mapped I/O
▶With special assembler instructions (In / Out) you access 

the I/O module registers as special addresses (called ports).
▶E.g.:   out(0x105A, 1) ;

Mem
.

I/O

Mem
.

I/O

ARCOS @ UC3M

Control
State
Data

0x0501
0x0502
0x0503
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(2/3) Transfer unit

55

▶ Block device:
▶Unit: blocks of bytes
▶Access: sequential or direct
▶Actions: read, write, situarse, …
▶Examples:  tapes and disk

▶ Character device:
▶Unit: characters (ASCII, Unicode, etc.)
▶Access: sequential
▶Actions:  get,  put, ….

▶Example: terminals, printers, etc.

ARCOS @ UC3M

Control
State
Data

0x0501
0x0502
0x0503
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(3/3) Interaction with computer

56

▶Direct I/O
▶CPU does all I/O:     busy wait → transfer

▶ Interrupted I/O
▶CPU does not wait, only transfer data

▶DMA I/O (direct memory access)
▶CPU neither wait, nor transfer, it is notified at the end of data transfers
◻ I/O module is more sophisticated (cost more, better performance)
◻ Try to reduce the overheat when transfering blocks of data

‘polling’

ARCOS @ UC3M

INTControl
State
Data

0x0501
0x0502
0x0503

I/O logic



Alejandro Calderón Mateos

Introduction

▶Definition of Peripheral
▶General structure
▶Implications in the O.S.

ARCOS @ UC3M57

Peripheral

Transfer unit

kernel
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Implications in the operating system

1. Data structures

ARCOS @ UC3M58

kernel
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Implications in the operating system

2. Functions: internal management

ARCOS @ UC3M59

kernel

▶ Request

▶ [Interrupt]
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Implications in the operating system

3. Functions: services

ARCOS @ UC3M60

kernel

▶ Locate-driver

▶ Open work session

▶ Write (request)

▶ Read (read response)

▶ Close work session

▶ Request

▶ Interrupt
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Implications in the operating system

3. Functions: service API 

ARCOS @ UC3M61

kernel

▶ Locate-driver

▶ Open work session

▶ Write (request)

▶ Read (read response)

▶ Close work session

▶ Request

▶ Interrupt

▶ …
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Implications in the operating system

(1 + 2) Data structures + internal mgmt. functions = driver

ARCOS @ UC3M62

kernel

▶ Request

▶ Interrupt
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▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System 

of the device handling

63 ARCOS @ UC3M
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Example
Direct I/O

64

Memory
Bus

I/OI/OI/OI/O

ARCOS @ UC3M
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Example
Direct I/O

65

request:
for (i=0; i<100;i++) 

{

// read request 

out(0x500, 0) ;    

// wait loop (busy wait)

do {

in(0x508, &(p.status)) ;  // ready?

} while (0 == (p.status)) ;

// read data

in(0x50C, &(p.data[i])) ; 

}

Control 1
Control 2

State
0x0500
0x0504
0x0508

I/O Module

Data
0x050C

▶ Control 1 information
▶ 0: read
▶ 1: write

▶ State information
▶ 0: busy device
▶ 1: device ready (data available)

▶ Data
▶ Data from device

ARCOS @ UC3M
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Example
Direct I/O

66

for (i=0; i<100;i++)  {

out(0x500,0) ;     

do {

in(0x508,&p.status) ;  

} while (0 == p.status) ;

in(0x50C,&p.data[i]) ; 

}

k
// read(file,data,100) ;
…

P1

// read(file,data,100) ;
… // next instruction

P1

ARCOS @ UC3M
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▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System 

of the device handling

67 ARCOS @ UC3M
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Example
Interrupted I/O

68

Memory
Bus

INT
I/OI/OI/OI/O

ARCOS @ UC3M
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Example
Interrupted I/O

69

INT_05:   
in(0x508, &(p.status)) ;                         // read state

in(0x50C, &(p.data[p.counter])) ;       // read data

if ((p.counter < p.neltos) && (p.status == OK)) {

p.counter++ ;

out(0x500, 0) ;  // read

} else  { // process->state = ready  }

ret_int # restore registers & return

request: 

// read request
p.counter = 0;
p.neltos = 100;  
out(0x500, 0) ;   // read

// Voluntary context switching (V.C.S.)

Control 1
Control 2

State
0x0500
0x0504
0x0508

I/O Module

Data
0x050C

▶ Control 1 information
▶ 0: read
▶ 1: write

▶ State information
▶ 0: busy device
▶ 1: device ready (data available)

▶ Data
▶ Data from device
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P2

Example
Interrupted I/O
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// request data (out)

// block proc. (state, lists, etc.)

// execute another ready proc.

// read(file,data,100) ;
…

k

…P2
INT_05:   // read data (in)

INT_05:   // read last data
// proc.->state = ready 

k

k
// read(file,data,100) ;
…

P1

INT_05:   // read data (in) k
P2

P1

…

ARCOS @ UC3M
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▶ Direct I/O

▶ Interrupted I/O

▶ DMA I/O

Impact in the Operating System 

of the device handling

71 ARCOS @ UC3M
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Memory
Bus

INT

I/O
DMA 

I/O

BUSACK

BUSRQ

Coordination between CPU and I/O Modules 
in order to access to memory
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Memory
Bus

INT

I/O
DMA 

I/O

BUSACK

BUSRQ

Each data transferred to memory implies:
• To ask permission for accessing memory (BUSRQ)
• To wait permission grant (BUSACK)
• To transfer to memory
• To disable request permission (BUSRQ)

ARCOS @ UC3M
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Memory
Bus

INT

I/O
DMA 

I/O

BUSACK

BUSRQ

Once all data has been transferred:
• Fire an interrupt  (INT) to notify the CPU

ARCOS @ UC3M
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request: 

// perform block request 

out(0x500,0) ;           // read 

out(0x504,p.data) ;   // vector address 

out(0x508,100) ;      // # eltos

// Voluntary Context Switching (V.C.S.)

INT_05:    // read state y data
in(0x50C, &status) ; 

if (p.status…

// process->state = ready 
ret_int # restore registers & return

0x0500
0x0504
0x0508

I/O Module

0x050C

▶ Control 1 information

▶ 0: read, 1: write

▶ Control 2 information

▶ Memory address.

▶ Control 3 information

▶ Number of elements

▶ State information

▶ 0: busy device

▶ 1: device ready (data available)

▶ Data

▶ Data from device

ARCOS @ UC3M
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// request data (out)

// block proc. (state, lists, etc.)

// execute another ready proc.

// read(file,data,100) ;
…

k

P1

…

P2

INT_05:   // DMA ends
// proc.->state = ready 

k
// read(file,data,100) ;
…

P1
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Main types of protocols

▶Request -> individual response
▶Most devices

▶Only request
▶ E.g.: graphic card
▶Direct I/O (faster or real-time)

▶Only response 
▶ E.g.: clock
▶ Interrupted I/O (fire data without former request)

▶Request -> shared response
▶ E.g.: hard disk

ARCOS @ UC3M77
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