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To remember…

ARCOS @ UC3M3

1. To prepare and review the class explanations. 
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.
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General context…

ARCOS @ UC3M4

Process 
mgmt.

Driver 
mgmt.

Introduction
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Overview
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Impact in the operating system 

of the device handling

▶Direct I/O (Programmed I/O)

▶ Interrupt I/O

▶DMA I/O

7 ARCOS @ UC3M

▶ Control information 1
▶ 0: read, 1: write

▶ Control information 2
▶ Memory address

▶ Control information 3
▶ Number of elements

▶ State information
▶ 0: device busy 
▶ 1: device (data) ready

▶ Data
▶ Device data

0x0504
0x0508
0x050C

I/O module

0x0510

Control 1
0x0500 Control 2

Control 3
State
Data
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INT_05:   

in(0x508, &(p.status)); 

in(0x50C, &(p.data[p.counter])); 

if ( (p.counter<p.neltos) && 
(p.status== OK))    

{

p.counter++ ;           
out(0x500,0) ;  // read

}

else { // petitioner process to ready state }

ret_int # restore registers & return

Example
Direct I/O, Interrupt I/O, and DMA I/O

8

request: 
for (i=0; i<100;i++) 

{

// read next

out(0x500,0) ;    

// wait loop

do {

in(0x508,&p.status) ;  

} while (0 == p.status) ;

// read data

in(0x50C,&(p.data[i])) ; 

}

ARCOS @ UC3M

request: 

p.counter = 0; 

p.neltos = 100;  

out(0x500, 0) ;  

//  V.C.S.

request: 

out(0x500, 0) ;         

out(0x504,p.data) ;   

out(0x508,100) ;     

// V.C.S.

INT_05:    

// read state and data

in(0x50C, &status) ; 

if (p.status…

// petitioner process to ready state

ret_int # restore registers & return
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INT_05:   

in(0x508, &(p.status)); 

in(0x50C, &(p.data[p.counter])); 

if ( (p.counter<p.neltos) && 
(p.status== OK))    

{

p.counter++ ;           
out(0x500,0) ;  // read

}

else { // petitioner process to ready state }

ret_int # restore registers & return

Example
Direct I/O, Interrupt I/O, and DMA I/O
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ARCOS @ UC3M

request: 

p.counter = 0; 

p.neltos = 100;  

out(0x500, 0) ;  
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▶ Direct I/O (Programmed I/O)

▶ Interrupt I/O

▶ DMA I/O

Make better use of waiting times

10 ARCOS @ UC3M
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Proposed model

▶Multiprogramming
▶ Several applications loaded in main memory 
▶ If one blocks because request some slow I/O then

another is executed until this new one get blocket too
▶ Voluntary Context Switching (V.C.S.)

▶ Efficiency in the use of the processor.
▶ Degree of multiprogramming = number of applications loaded in main memory

ARCOS @ UC3M11

CPU

Memory

App 1

App 2

App 3

App1
App2

App3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking 
•multiprocess
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Multiprogramming (data & functions)

ARCOS @ UC3M13

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Requirements Information  (in data structures) Functions (Internals, services, and API)

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process
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Multiprogramming

ARCOS @ UC3M14

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be 

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memory

App 1

App 2

App 3

App1
App2

App3
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Multiprogramming (data)
Process states (V.C.S.)

ARCOS @ UC3M15

ending
Running

Ready Blocked
end I/Ocreate

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be 

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

PCB5

•State
•List/Queue
•Context
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Multiprogramming (data)
Process states (V.C.S.)

ARCOS @ UC3M16

▶ Running: running in an assigned CPU
▶ Ready to run: no processor available for the process
▶ Blocked: waiting for an event

▶ Suspended and ready: preemption but ready to run
▶ Suspended and blocked: preemption and waiting for event

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5
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Multiprogramming (data)
List/Queues de Processes (V.C.S.)

ARCOS @ UC3M17

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be 

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

PCB3 PCB4PCB7 PCB2

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5
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Multiprogramming (data)
List/Queues de Processes (V.C.S.)

ARCOS @ UC3M18

▶ Ready queue: Processes waiting for CPU available
▶ Block queue per “resource”: Processes waiting to the completion of 

a former request done to the associated “resource” (device, lock, 
etc.)

▶ One process MUST be, at most, in only one queue 

•State
•List/Queue
•Context

PCB3 PCB4PCB7 PCB2

ending
Running

Ready Blocked
end I/Ocreate

PCB5
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Processes queues (traditional implementation)

ARCOS @ UC3M19

Process state

Memory references

Open files list

Registers 

. . .

Process table

Process 0
Process state

Memory references

Open files list

Registers 

. . .

Process state

Memory references

Open files list

Registers 

. . .

…

Process 1 Process n

tail
headReady queue

tail
headQueue for …

▶ Ready queue: Processes waiting for CPU available
▶ Block queue per “resource”: Processes waiting to the completion of 

a former request done to the associated “resource” (device, lock, 
etc.)

▶ One process MUST be, at most, in only one queue 
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Multiprogramming (data)
Context of a process

ARCOS @ UC3M20

▶ There will be several applications loaded in memory
▶ Si una aplicación se bloquea por I/O, entonces

se ejecuta otra (hasta que quede bloqueada)
▶Voluntary Context Switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5

PCB3 PCB4PCB7 PCB2
PCB1
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Multiprogramming (data)
Context of a process

ARCOS @ UC3M21

▶ General purpose registers: PC, SR, etc.
▶ Specific registers: Floating point, etc.
▶ Resource references: code pointer, data pointer, etc.

•State
•List/Queue
•Context

PCB3 PCB4PCB7 PCB2

ending
Running

Ready Blocked
end I/Ocreate

PCB5

PCB1
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Multiprogramming: example of execution

ARCOS @ UC3M22

process P0 process P1operating system

ready

executing
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Multiprogramming: example of execution

ARCOS @ UC3M23

process P0 process P1operating system

ready

executing

blocking call1
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Multiprogramming: example of execution

ARCOS @ UC3M24

process P0 process P1operating system

ready

executing

save context in PCB0
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Multiprogramming: example of execution

ARCOS @ UC3M25

process P0 process P1operating system

ready

executing

save context in PCB0

blocked
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Multiprogramming: example of execution

ARCOS @ UC3M26

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

blocked
executing
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Multiprogramming: example of execution

ARCOS @ UC3M27

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

ready

blocked

interrupt2
executing
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Multiprogramming: example of execution

ARCOS @ UC3M28

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

ready

blocked

3 blocking call 
(e.g.: read hard disk block 

request, wait data in pipe, etc.)

executing
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Multiprogramming: example of execution

ARCOS @ UC3M29

process P0 process P1operating system

ready

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked
executing
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Multiprogramming: example of execution

ARCOS @ UC3M30

process P0 process P1operating system

ready

executing

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked

blocked

executing
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Multiprogramming: example of execution

ARCOS @ UC3M31

process P0 process P1operating system

ready

executing

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked

blocked

executing

1

2

3

blocking call

interrupt

blocking call
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KEYBOARD_ReadKey()
• Si (isEmpty(KBD_keys))

• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch( &(process->context),                     
&(currentP->context)); 

• return extract(KBD_keys) ;

Example pseudocode (P0)

ARCOS @ UC3M32

save state in PCB0

load state to PCB1

PCB7 PCB2

PCB1 PCB3

scheduler()
• return extract(CPU_ready);

1
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Keyboard_Interrupt_Software ()

• process = first (KBD_blocked);
• IF  (process != NULL)  

• remove (KBD_blocked, process);
• process->state = READY;
• insert (CPU_ready, process);

• return ok;

Example pseudocode (P1)

ARCOS @ UC3M33

Bloc
ked

Rea
dy

end I/O

PCB7 PCB2

Keyboard_Interrupt_Hardware ()

• T = in (KEYBOARD_HW_ID);

• process = insert (T, KBD_keys);
• Insert (Keyboard_Interrupt_Software); 
• Activate_Software_Interrupt();

2
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Keyboard_Interrupt_Software ()

• process = first (KBD_blocked);
• IF  (process != NULL)  

• remove (KBD_blocked);
• process->state = READY;
• insert (CPU_ready, process);

• return ok;

Example pseudocode (P1)

ARCOS @ UC3M34

Bloc
ked

Rea
dy

end I/O

PCB7 PCB2

Keyboard_Interrupt_Hardware ()

• T = in (KEYBOARD_HW_ID);

• process = insert (T, KBD_keys);
• Insert (Keyboard_Interrupt_Software); 
• Activate_Software_Interrupt();

• One process MUST be, at most, only in one queue:

[correct] remove + insert

[incorrect] insert    + remove

2
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DISK_ReadBlock()
• IF (disk_block is not in cache)

• currentP->state = BLOCKED;
• Insert(DISK_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch( &(process->context),                     
&(currentP->context)); 

• return extract(DISK_cache, bloque) ;

Example pseudocode (P1)

ARCOS @ UC3M35

save state in PCB1

load state to PCB0

PCB7 PCB2

PCB1 PCB3

scheduler()
• return extract(CPU_ready);

3
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KEYBOARD_ReadKey()
• IF (isEmpty(KBD_keys))

• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch( &(process->context),                     
&(currentP->context)); 

• return extract(KBD_keys) ;

Example pseudocode (P0)

ARCOS @ UC3M36

3
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Scheduler and activator

▶Scheduler: 
Select the process to be 
executed among those who are 
ready to be executed

▶Activador: 
Give control to the process that 
the scheduler has selected
(context switch)

ARCOS @ UC3M37

endingRunni
ng

Ready Blocked
end I/O

Ready & 
Suspend

Blocke

d & 
Suspe

nd

create

tail
head

registers

PCB7

…

registers

PCB2

…
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KEYBOARD_ReadKey()

• IF (isEmpty(KBD_keys))
• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;
• activator ( &(process->context),                     

&(currentP->context)); 

• return extract(KBD_keys) ;

Scheduler and activator

ARCOS @ UC3M38

scheduler()
• return extract(CPU_ready);
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Queues/Lists of processes
Linux

ARCOS @ UC3M39

"sched.c"
struct rq runqueues

"current.h"
task_struct *current

…

"wait.h"
DEFINE_WAIT(wq1)

…

"sched.h"
task_struct  init_task

…
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Queues/Lists of processes
Linux

ARCOS @ UC3M40

runqueues
kernel/sched.c

struct rq

current

…

init_task
sched.h

task_struct …
sched.h

task_struct

a. atomic_t is_blocking_mode = ATOMIC_INIT(0);

DECLARE_WAIT_QUEUE_HEAD(dso_wq1);

b. atomic_set(&is_blocking_mode, 0);

wait_event_interruptible(dso_wq1, 

(atomic_read(&is_blocking_mode) == 1));

c. atomic_set(&is_blocking_mode, 1);

wake_up_interruptible(&dso_wq1);

"wait.h"
DEFINE_WAIT(wq1)

…
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Queues/Lists of processes
Linux

ARCOS @ UC3M41

runqueues
kernel/sched.c

struct rq

current

…

init_task
sched.h

task_struct …
sched.h

task_struct

a. atomic_t is_blocking_mode = ATOMIC_INIT(0);

DECLARE_WAIT_QUEUE_HEAD(dso_wq1);

b. atomic_set(&is_blocking_mode, 0);

wait_event_interruptible(dso_wq1, 

(atomic_read(&is_blocking_mode) == 1));

c. atomic_set(&is_blocking_mode, 1);

wake_up_interruptible(&dso_wq1);

• DEFINE_WAIT, DECLARE_WAIT_QUEUE_HEAD(wq)

• wq->flags &= ~WQ_FLAG_EXCLUIFVE 

wq->flags  |=    WQ_FLAG_EXCLUIFVE 

"wait.h"
DEFINE_WAIT(wq1)

…

wake_up, wake_up_nr, wake_up_all, wake_up_interruptible, 

wake_up_interruptible_nr, wake_up_interruptible_all, 

wake_up_interruptible_sync, wake_up_locked(queue)

wait_event, wait_event_interruptible (wq, condition)

wait_event_timeout, 

wait_event_interruptible_timeout (wq, condition, timeout)
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Clock handler: basic behavior

ARCOS @ UC3M43

process P0 operating system

executing

interrupt o llamada al sistema

interrupt o llamada al sistema

interrupt o llamada al sistema

Clock_Hardware_Interrupt ()
• Ticks++

Clock_Hardware_Interrupt ()
• Ticks++

Clock_Hardware_Interrupt ()
• Ticks++
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Timing
Linux

ARCOS @ UC3M44

• void process_timeout (unsigned long __data) {

wake_up_process((task_t *)__data);

}

• timespec t;

unsigned long expire;

struct timer_list timer; 

Understanding the Linux kernel (250)

"timer.h"
timer_list

…
…
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Timing
Linux

ARCOS @ UC3M45

"timer.h"
timer_list

…

• expire = timespec_to_jiffies(&t) + 1 + jiffies;

init_timer(&timer);

timer.expires = expire;

timer.data = (unsigned long) current;

timer.function = process_timeout;

add_timer(&timer);

current->state = TASK_INTERRUPTIBLE;

schedule(); /* ejecutar mientras otro process */

del_singleshot_timer_sync(&timer);

Understanding the Linux kernel (250)

…
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Multitasks (data & functions)

ARCOS @ UC3M46

Requirements Information  (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation / 

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the 

message queue

• API for concurrency control (access to data 

structures)

o Hierarchy of 

processes

• Family relationship

• Related sets of processes

• Processes from the same session 

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process
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States of a process

ARCOS @ UC3M47

ending
Running

Ready Blocked
end I/Ocreate

ending
Running

Ready Blocked
end I/Ocreate

V.C.S. 

V.C.S. + I.C.S.

•State
•List/Queue
•Context
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Clock handler: with V.C.S. + I.C.S.

ARCOS @ UC3M48

process P0 operating system

executing

interrupt o llamada al sistema

interrupt o llamada al sistema

interrupt o llamada al sistema

save context in PCB0

restore context from PCB1

ready

process P1

executing

ready

interrupt o llamada al sistema
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Clock_Schedule_Quantum ()
• currentP->quantum = currentP->quantum - 1;
• IF  (currentP->quantum == 0)  

• currentP->state = READY;
• currentP->quantum = QUANTUM;
• insert (CPU_ready, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;
• context_switch( 

&(process->context), 
&(currentP->context)); 

• return ok;

Example pseudocode (P0)

ARCOS @ UC3M49

Run
ningRea

dy

PCB7 PCB2

Clock_Hardware_Interrupt ()
• Ticks++;
• Insert (Clock_Schedule_Quantum); 
• Activate_Software_Interrupt();

PCB2 PCB5

save state in PCB0

load state in PCB1

scheduler()
• return extract(CPU_ready);
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Process states
Linux

ARCOS @ UC3M50

Ready

Stopped

Executing ZombieScheduling

Signal

Termination

Signal

Creation

Uninterruptible

Event Event

Interruptible
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Multiprocess

ARCOS @ UC3M51

Requirements Information  (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation / 

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the 

message queue

• API for concurrency control (access to data 

structures)

o Hierarchy of 

processes

• Family relationship

• Related sets of processes

• Processes from the same session 

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process
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Multiprocess

▶Afinity:
▶ Processes have affinity to a CPU: «better to come back to the same CPU»

▶Symmetry:
▶ Some processes need to be executed in a particular CPU with specific capabilities.

ARCOS @ UC3M52
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ARCOS @ UC3M
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Process Scheduling
Scheduling levels

▶Long-term
▶ Add more processes to be executed
▶ Low frequently invoked

▶ Slower task

▶Mid-term 
▶ Load more processes to RAM

▶Short-term
▶ What process in in CPU

▶ High frequently invoked
▶ Fast

ARCOS @ UC3M54

endingRun
ning

Ready
Bloc
ked

end I/O

Ready & 
Suspend

Blocked & 
Suspend

create

Mid-term Scheduling

Short-term Scheduling 

Long-term Scheduling

Sistemas operativos: una visión aplicada
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Process Scheduling
goals of scheduling algorithms (by system)

▶ All systems:
▶ Equitable – offers each process an equal part of the CPU

▶ Expeditive – compliance with the policy of distribution

▶ Balanced – keep all parts of the system occupied

▶ Batch systems:
▶ Productivity – maximize the number of jobs per hour

▶ Waiting time – minimize the time between issuance and termination of work 

▶ CPU usage – keep the CPU busy all the time

▶ Interactive systems:
▶ Response time – respond to requests as quickly as possible

▶ Adjusted – meet the expectations of the users

▶ Real-time systems:
▶ Compliance with deadlines – avoid loss of data (when it is needed)

▶ Predictable – avoid degradation of quality in multimedia systems
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Process Scheduling
characteristics of scheduling algorithms (1/2)

▶Preemption:
▶Without:

▶ One process keeps CPU while it wants.

▶ Volunteer Context Switching (V.C.S.)

▶ [a/d] One process can block the full system but it easy to share resources

▶ Windows 3.1, Windows 95 (16 bits), NetWare, MacOS 9.x.

▶With:
▶ Some clock periodically interrupt: 

◻ when the assigned quantum expires, another process is executed 

▶ (It adds) Involuntary Context Switching (I.C.S.) 

▶ [a/d] Better interactivity but it needs concurrency control mechanisms

▶ AmigaOS (1985), Windows NT-XP-Vista-7, Linux, BSD, MacOS X
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Process Scheduling
characteristics of scheduling algorithms (2/2)

▶Classification of elements in queues:

▶ By priority

▶ By type
▶ CPU-bound (more ‘burst’ of time using CPU)

▶ IO-bound (more ‘burst’ of time waiting I/O)

▶CPU-aware:

▶ Affinity:
▶ Processes have affinity to one CPU: «better come back to the same CPU»

▶ Symetry:
▶ Processes are executed in some CPU with specific capabilities

ARCOS @ UC3M57
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Process Scheduling
Main scheduling algorithms (1/3)

▶Round Robin:
▶ Rotary assignation of the processor

▶ A maximum processor time is assigned (quantum or quantum)

▶ Equitable but interactive:
▶ Better by UID than by process

▶ Linux:  
◻ Introduced in 11/2010 one kernel patch that creates a task group by TTY in order to improve the interactivity in high loaded systems.

◻ 224 lines of codes that modifie the kernel scheduler and first tests shows that the average latency drops to 60 times (1/60).

▶Used in timeshare systems

ARCOS @ UC3M58 http://www.phoronix.com/scan.php?page=article&item=linux_2637_video&num=1
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Process Scheduling
Main scheduling algorithms (2/3)

▶Priority:
▶ CPU assigned to the highest priority process 

▶ It can be combined with Round-Robin. Example with three priority classes.

▶ Characteristics:
▶ fixed priorities: problem of starvation
▶ Not fixed: use of some aging algorithm

▶ Use in timeshare systems with real-time aspects

ARCOS @ UC3M59
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Process Scheduling
Main scheduling algorithms (3/3)

▶First the shortest work:
▶ Given a set of tasks that is known its total execution time, they are ordered from the lowest 

to the longest.

▶ Features:
▶ [a] Produces the shortest response time (in average)

▶ [d] Penalize long works.

▶ Used in batch systems.

▶FIFO:
▶ Execution by the strict order of arrival.

▶ Features:
▶ [a] Simple to be implemented.

▶ [d] Penalizes priority tasks.

▶ Used in batch systems.
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Policy vs mechanism

▶Divide  what can be done from how it can be done
▶Usually one process knows which one is the high priority thread, the one 

with more I/O requests, etc.

▶To use parametrize scheduling algorithm 
▶Mechanism is in the kernel

▶Parameters given by users processes
▶Policy set by user processes
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Multipolicy scheduling
Windows 2000 y Linux

ARCOS @ UC3M62 Sistemas operativos: una visión aplicada
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Multipolicy scheduling
Windows 2000

ARCOS @ UC3M63 Sistemas operativos: una visión aplicada
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Lesson 3b
process, devices, drivers, and extended services

Operating System Design
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