
Lesson 3b
process, devices, drivers, and extended services

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid

Alejandro Calderón Mateos

Recommended readings

2

1. Carretero 2007:
1. Cap.7

1. Tanenbaum 2006(en):
1. Cap.3

1. Stallings 2005(en):
1. Parte tres

1. Silberschatz 2006:
1. Cap. Sistemas Module

Base Recommended

ARCOS @ UC3M

Alejandro Calderón Mateos

To remember…

ARCOS @ UC3M3

1. To prepare and review the class explanations.
▶Study the bibliography material: only slides are not enough.
▶Ask your doubts.

1. To exercise skills and abilities.
▶Solve as much exercises as possible.
▶Perform the guided laboratories progressively.
▶Build laboratories progressively.

Alejandro Calderón Mateos

General context…

ARCOS @ UC3M4

Process
mgmt.

Driver
mgmt.

Introduction

Alejandro Calderón Mateos

Overview

5

▶Introduction

▶V.C.S.

▶Timing and

I.C.S.

▶Scheduling

ARCOS @ UC3M

Peripherals

Kernel

Services

Shell processProcesses

Users

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Operating

system

Alejandro Calderón Mateos

Overview

6

▶Introduction

▶V.C.S.

▶Timing and

I.C.S.

▶Scheduling

ARCOS @ UC3M

Peripherals

Kernel

Services

Shell processProcesses

Users

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Operating

system

Alejandro Calderón Mateos

Impact in the operating system

of the device handling

▶Direct I/O (Programmed I/O)

▶ Interrupt I/O

▶DMA I/O

7 ARCOS @ UC3M

▶ Control information 1
▶ 0: read, 1: write

▶ Control information 2
▶ Memory address

▶ Control information 3
▶ Number of elements

▶ State information
▶ 0: device busy
▶ 1: device (data) ready

▶ Data
▶ Device data

0x0504
0x0508
0x050C

I/O module

0x0510

Control 1
0x0500 Control 2

Control 3
State
Data

Alejandro Calderón Mateos

INT_05:

in(0x508, &(p.status));

in(0x50C, &(p.data[p.counter]));

if ((p.counter<p.neltos) &&
(p.status== OK))

{

p.counter++ ;
out(0x500,0) ; // read

}

else { // petitioner process to ready state }

ret_int # restore registers & return

Example
Direct I/O, Interrupt I/O, and DMA I/O

8

request:
for (i=0; i<100;i++)

{

// read next

out(0x500,0) ;

// wait loop

do {

in(0x508,&p.status) ;

} while (0 == p.status) ;

// read data

in(0x50C,&(p.data[i])) ;

}

ARCOS @ UC3M

request:

p.counter = 0;

p.neltos = 100;

out(0x500, 0) ;

// V.C.S.

request:

out(0x500, 0) ;

out(0x504,p.data) ;

out(0x508,100) ;

// V.C.S.

INT_05:

// read state and data

in(0x50C, &status) ;

if (p.status…

// petitioner process to ready state

ret_int # restore registers & return

Alejandro Calderón Mateos

INT_05:

in(0x508, &(p.status));

in(0x50C, &(p.data[p.counter]));

if ((p.counter<p.neltos) &&
(p.status== OK))

{

p.counter++ ;
out(0x500,0) ; // read

}

else { // petitioner process to ready state }

ret_int # restore registers & return

Example
Direct I/O, Interrupt I/O, and DMA I/O

9

request:
for (i=0; i<100;i++)

{

// read next

out(0x500,0) ;

// wait loop

do {

in(0x508,&p.status) ;

} while (0 == p.status) ;

// read data

in(0x50C,&(p.data[i])) ;

}

ARCOS @ UC3M

request:

p.counter = 0;

p.neltos = 100;

out(0x500, 0) ;

// V.C.S.

request:

out(0x500, 0) ;

out(0x504,p.data) ;

out(0x508,100) ;

// V.C.S.

INT_05:

// read state and data

in(0x50C, &status) ;

if (p.status…

// petitioner process to ready state

ret_int # restore registers & return

Alejandro Calderón Mateos

▶ Direct I/O (Programmed I/O)

▶ Interrupt I/O

▶ DMA I/O

Make better use of waiting times

10 ARCOS @ UC3M

Alejandro Calderón Mateos

Proposed model

▶Multiprogramming
▶ Several applications loaded in main memory
▶ If one blocks because request some slow I/O then

another is executed until this new one get blocket too
▶ Voluntary Context Switching (V.C.S.)

▶ Efficiency in the use of the processor.
▶ Degree of multiprogramming = number of applications loaded in main memory

ARCOS @ UC3M11

CPU

Memory

App 1

App 2

App 3

App1
App2

App3

•resource
•multiprogramming
• isolation/sharing
• process hierarchy

•multitasking
•multiprocess

Alejandro Calderón Mateos

Overview

12

▶Introduction

▶V.C.S.

▶Timing and

I.C.S.

▶Scheduling

ARCOS @ UC3M

Peripherals

Kernel

Services

Shell processProcesses

Users

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Operating

system

Alejandro Calderón Mateos

Multiprogramming (data & functions)

ARCOS @ UC3M13

kernel

▶ …

▶ …

▶ …
▶ …

▶ …
▶ …

Requirements Information (in data structures) Functions (Internals, services, and API)

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

Alejandro Calderón Mateos

Multiprogramming

ARCOS @ UC3M14

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memory

App 1

App 2

App 3

App1
App2

App3

Alejandro Calderón Mateos

Multiprogramming (data)
Process states (V.C.S.)

ARCOS @ UC3M15

ending
Running

Ready Blocked
end I/Ocreate

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

PCB5

•State
•List/Queue
•Context

Alejandro Calderón Mateos

Multiprogramming (data)
Process states (V.C.S.)

ARCOS @ UC3M16

▶ Running: running in an assigned CPU
▶ Ready to run: no processor available for the process
▶ Blocked: waiting for an event

▶ Suspended and ready: preemption but ready to run
▶ Suspended and blocked: preemption and waiting for event

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5

Alejandro Calderón Mateos

Multiprogramming (data)
List/Queues de Processes (V.C.S.)

ARCOS @ UC3M17

▶ There will be several applications loaded in memory.
▶ If an application is blocked by I/O then another will be

executed (until it is blocked)
▶Voluntary context switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

PCB3 PCB4PCB7 PCB2

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5

Alejandro Calderón Mateos

Multiprogramming (data)
List/Queues de Processes (V.C.S.)

ARCOS @ UC3M18

▶ Ready queue: Processes waiting for CPU available
▶ Block queue per “resource”: Processes waiting to the completion of

a former request done to the associated “resource” (device, lock,
etc.)

▶ One process MUST be, at most, in only one queue

•State
•List/Queue
•Context

PCB3 PCB4PCB7 PCB2

ending
Running

Ready Blocked
end I/Ocreate

PCB5

Alejandro Calderón Mateos

Processes queues (traditional implementation)

ARCOS @ UC3M19

Process state

Memory references

Open files list

Registers

. . .

Process table

Process 0
Process state

Memory references

Open files list

Registers

. . .

Process state

Memory references

Open files list

Registers

. . .

…

Process 1 Process n

tail
headReady queue

tail
headQueue for …

▶ Ready queue: Processes waiting for CPU available
▶ Block queue per “resource”: Processes waiting to the completion of

a former request done to the associated “resource” (device, lock,
etc.)

▶ One process MUST be, at most, in only one queue

Alejandro Calderón Mateos

Multiprogramming (data)
Context of a process

ARCOS @ UC3M20

▶ There will be several applications loaded in memory
▶ Si una aplicación se bloquea por I/O, entonces

se ejecuta otra (hasta que quede bloqueada)
▶Voluntary Context Switching (V.C.S.)

Memoria

App 1

App 2

App 3

App1
App2

App3

•State
•List/Queue
•Context

ending
Running

Ready Blocked
end I/Ocreate

PCB5

PCB3 PCB4PCB7 PCB2
PCB1

Alejandro Calderón Mateos

Multiprogramming (data)
Context of a process

ARCOS @ UC3M21

▶ General purpose registers: PC, SR, etc.
▶ Specific registers: Floating point, etc.
▶ Resource references: code pointer, data pointer, etc.

•State
•List/Queue
•Context

PCB3 PCB4PCB7 PCB2

ending
Running

Ready Blocked
end I/Ocreate

PCB5

PCB1

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M22

process P0 process P1operating system

ready

executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M23

process P0 process P1operating system

ready

executing

blocking call1

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M24

process P0 process P1operating system

ready

executing

save context in PCB0

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M25

process P0 process P1operating system

ready

executing

save context in PCB0

blocked

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M26

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

blocked
executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M27

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

ready

blocked

interrupt2
executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M28

process P0 process P1operating system

ready

executing

save context in PCB0

restore context from PCB1

ready

blocked

3 blocking call
(e.g.: read hard disk block

request, wait data in pipe, etc.)

executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M29

process P0 process P1operating system

ready

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked
executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M30

process P0 process P1operating system

ready

executing

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked

blocked

executing

Alejandro Calderón Mateos

Multiprogramming: example of execution

ARCOS @ UC3M31

process P0 process P1operating system

ready

executing

executing

ready

save context in PCB0

restore context from PCB1

save context in PCB1

restore context from PCB0

blocked

blocked

executing

1

2

3

blocking call

interrupt

blocking call

Alejandro Calderón Mateos

KEYBOARD_ReadKey()
• Si (isEmpty(KBD_keys))

• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch(&(process->context),
&(currentP->context));

• return extract(KBD_keys) ;

Example pseudocode (P0)

ARCOS @ UC3M32

save state in PCB0

load state to PCB1

PCB7 PCB2

PCB1 PCB3

scheduler()
• return extract(CPU_ready);

1

Alejandro Calderón Mateos

Keyboard_Interrupt_Software ()

• process = first (KBD_blocked);
• IF (process != NULL)

• remove (KBD_blocked, process);
• process->state = READY;
• insert (CPU_ready, process);

• return ok;

Example pseudocode (P1)

ARCOS @ UC3M33

Bloc
ked

Rea
dy

end I/O

PCB7 PCB2

Keyboard_Interrupt_Hardware ()

• T = in (KEYBOARD_HW_ID);

• process = insert (T, KBD_keys);
• Insert (Keyboard_Interrupt_Software);
• Activate_Software_Interrupt();

2

Alejandro Calderón Mateos

Keyboard_Interrupt_Software ()

• process = first (KBD_blocked);
• IF (process != NULL)

• remove (KBD_blocked);
• process->state = READY;
• insert (CPU_ready, process);

• return ok;

Example pseudocode (P1)

ARCOS @ UC3M34

Bloc
ked

Rea
dy

end I/O

PCB7 PCB2

Keyboard_Interrupt_Hardware ()

• T = in (KEYBOARD_HW_ID);

• process = insert (T, KBD_keys);
• Insert (Keyboard_Interrupt_Software);
• Activate_Software_Interrupt();

• One process MUST be, at most, only in one queue:

[correct] remove + insert

[incorrect] insert + remove

2

Alejandro Calderón Mateos

DISK_ReadBlock()
• IF (disk_block is not in cache)

• currentP->state = BLOCKED;
• Insert(DISK_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch(&(process->context),
&(currentP->context));

• return extract(DISK_cache, bloque) ;

Example pseudocode (P1)

ARCOS @ UC3M35

save state in PCB1

load state to PCB0

PCB7 PCB2

PCB1 PCB3

scheduler()
• return extract(CPU_ready);

3

Alejandro Calderón Mateos

KEYBOARD_ReadKey()
• IF (isEmpty(KBD_keys))

• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;

• context_switch(&(process->context),
&(currentP->context));

• return extract(KBD_keys) ;

Example pseudocode (P0)

ARCOS @ UC3M36

3

Alejandro Calderón Mateos

Scheduler and activator

▶Scheduler:
Select the process to be
executed among those who are
ready to be executed

▶Activador:
Give control to the process that
the scheduler has selected
(context switch)

ARCOS @ UC3M37

endingRunni
ng

Ready Blocked
end I/O

Ready &
Suspend

Blocke

d &
Suspe

nd

create

tail
head

registers

PCB7

…

registers

PCB2

…

Alejandro Calderón Mateos

KEYBOARD_ReadKey()

• IF (isEmpty(KBD_keys))
• currentP->state = BLOCKED;
• Insert(KBD_blocked, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;
• activator (&(process->context),

&(currentP->context));

• return extract(KBD_keys) ;

Scheduler and activator

ARCOS @ UC3M38

scheduler()
• return extract(CPU_ready);

Alejandro Calderón Mateos

Queues/Lists of processes
Linux

ARCOS @ UC3M39

"sched.c"
struct rq runqueues

"current.h"
task_struct *current

…

"wait.h"
DEFINE_WAIT(wq1)

…

"sched.h"
task_struct init_task

…

Alejandro Calderón Mateos

Queues/Lists of processes
Linux

ARCOS @ UC3M40

runqueues
kernel/sched.c

struct rq

current

…

init_task
sched.h

task_struct …
sched.h

task_struct

a. atomic_t is_blocking_mode = ATOMIC_INIT(0);

DECLARE_WAIT_QUEUE_HEAD(dso_wq1);

b. atomic_set(&is_blocking_mode, 0);

wait_event_interruptible(dso_wq1,

(atomic_read(&is_blocking_mode) == 1));

c. atomic_set(&is_blocking_mode, 1);

wake_up_interruptible(&dso_wq1);

"wait.h"
DEFINE_WAIT(wq1)

…

Alejandro Calderón Mateos

Queues/Lists of processes
Linux

ARCOS @ UC3M41

runqueues
kernel/sched.c

struct rq

current

…

init_task
sched.h

task_struct …
sched.h

task_struct

a. atomic_t is_blocking_mode = ATOMIC_INIT(0);

DECLARE_WAIT_QUEUE_HEAD(dso_wq1);

b. atomic_set(&is_blocking_mode, 0);

wait_event_interruptible(dso_wq1,

(atomic_read(&is_blocking_mode) == 1));

c. atomic_set(&is_blocking_mode, 1);

wake_up_interruptible(&dso_wq1);

• DEFINE_WAIT, DECLARE_WAIT_QUEUE_HEAD(wq)

• wq->flags &= ~WQ_FLAG_EXCLUIFVE

wq->flags |= WQ_FLAG_EXCLUIFVE

"wait.h"
DEFINE_WAIT(wq1)

…

wake_up, wake_up_nr, wake_up_all, wake_up_interruptible,

wake_up_interruptible_nr, wake_up_interruptible_all,

wake_up_interruptible_sync, wake_up_locked(queue)

wait_event, wait_event_interruptible (wq, condition)

wait_event_timeout,

wait_event_interruptible_timeout (wq, condition, timeout)

Alejandro Calderón Mateos

Overview

42

▶Introduction

▶V.C.S.

▶Timing and

I.C.S.

▶Scheduling

ARCOS @ UC3M

Peripherals

Kernel

Services

Shell processProcesses

Users

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Operating

system

Alejandro Calderón Mateos

Clock handler: basic behavior

ARCOS @ UC3M43

process P0 operating system

executing

interrupt o llamada al sistema

interrupt o llamada al sistema

interrupt o llamada al sistema

Clock_Hardware_Interrupt ()
• Ticks++

Clock_Hardware_Interrupt ()
• Ticks++

Clock_Hardware_Interrupt ()
• Ticks++

Alejandro Calderón Mateos

Timing
Linux

ARCOS @ UC3M44

• void process_timeout (unsigned long __data) {

wake_up_process((task_t *)__data);

}

• timespec t;

unsigned long expire;

struct timer_list timer;

Understanding the Linux kernel (250)

"timer.h"
timer_list

…
…

Alejandro Calderón Mateos

Timing
Linux

ARCOS @ UC3M45

"timer.h"
timer_list

…

• expire = timespec_to_jiffies(&t) + 1 + jiffies;

init_timer(&timer);

timer.expires = expire;

timer.data = (unsigned long) current;

timer.function = process_timeout;

add_timer(&timer);

current->state = TASK_INTERRUPTIBLE;

schedule(); /* ejecutar mientras otro process */

del_singleshot_timer_sync(&timer);

Understanding the Linux kernel (250)

…

Alejandro Calderón Mateos

Multitasks (data & functions)

ARCOS @ UC3M46

Requirements Information (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation /

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the

message queue

• API for concurrency control (access to data

structures)

o Hierarchy of

processes

• Family relationship

• Related sets of processes

• Processes from the same session

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Alejandro Calderón Mateos

States of a process

ARCOS @ UC3M47

ending
Running

Ready Blocked
end I/Ocreate

ending
Running

Ready Blocked
end I/Ocreate

V.C.S.

V.C.S. + I.C.S.

•State
•List/Queue
•Context

Alejandro Calderón Mateos

Clock handler: with V.C.S. + I.C.S.

ARCOS @ UC3M48

process P0 operating system

executing

interrupt o llamada al sistema

interrupt o llamada al sistema

interrupt o llamada al sistema

save context in PCB0

restore context from PCB1

ready

process P1

executing

ready

interrupt o llamada al sistema

Alejandro Calderón Mateos

Clock_Schedule_Quantum ()
• currentP->quantum = currentP->quantum - 1;
• IF (currentP->quantum == 0)

• currentP->state = READY;
• currentP->quantum = QUANTUM;
• insert (CPU_ready, currentP);
• process = currentP;

• currentP = scheduler();
• currentP->state = EXECUTION;
• context_switch(

&(process->context),
&(currentP->context));

• return ok;

Example pseudocode (P0)

ARCOS @ UC3M49

Run
ningRea

dy

PCB7 PCB2

Clock_Hardware_Interrupt ()
• Ticks++;
• Insert (Clock_Schedule_Quantum);
• Activate_Software_Interrupt();

PCB2 PCB5

save state in PCB0

load state in PCB1

scheduler()
• return extract(CPU_ready);

Alejandro Calderón Mateos

Process states
Linux

ARCOS @ UC3M50

Ready

Stopped

Executing ZombieScheduling

Signal

Termination

Signal

Creation

Uninterruptible

Event Event

Interruptible

Alejandro Calderón Mateos

Multiprocess

ARCOS @ UC3M51

Requirements Information (in data structures) Functions (Internals, services, and API)

Resources

• Areas of memory (code, data and stack)

• Open files

• Activated signals

• Several internal functions
• Several service function for memory, files, etc.

Multiprogramming

• Execution state

• Context: CPU registers…

• Process list

• Hw./Sw. int. from devices

• Scheduler

• Create/Destroy/Schedule process

o Insolation /

Sharing

• Message passing

• Cola de mensajes de recepción

• Memory compartida

• Zones, locks and conditions

• Send/Receive message and management of the

message queue

• API for concurrency control (access to data

structures)

o Hierarchy of

processes

• Family relationship

• Related sets of processes

• Processes from the same session

• Clonar/Cambiar imagen de proceso

• Associate process and leader selection

Multitasking
• Quantum restante

• Priority

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Multiprocess • Affinity

• Hw./Sw. int. from clock device

• Scheduler

• Create/Destroy/Schedule process

Alejandro Calderón Mateos

Multiprocess

▶Afinity:
▶ Processes have affinity to a CPU: «better to come back to the same CPU»

▶Symmetry:
▶ Some processes need to be executed in a particular CPU with specific capabilities.

ARCOS @ UC3M52

Alejandro Calderón Mateos

Overview

53

▶Introduction

▶V.C.S.

▶Timing and

I.C.S.

▶Scheduling

ARCOS @ UC3M

Peripherals

Kernel

Services

Shell processProcesses

Users

H
ar

d
w

ar
e

S
o
ft

w
ar

e

Operating

system

Alejandro Calderón Mateos

Process Scheduling
Scheduling levels

▶Long-term
▶ Add more processes to be executed
▶ Low frequently invoked

▶ Slower task

▶Mid-term
▶ Load more processes to RAM

▶Short-term
▶ What process in in CPU

▶ High frequently invoked
▶ Fast

ARCOS @ UC3M54

endingRun
ning

Ready
Bloc
ked

end I/O

Ready &
Suspend

Blocked &
Suspend

create

Mid-term Scheduling

Short-term Scheduling

Long-term Scheduling

Sistemas operativos: una visión aplicada

Alejandro Calderón Mateos

Process Scheduling
goals of scheduling algorithms (by system)

▶ All systems:
▶ Equitable – offers each process an equal part of the CPU

▶ Expeditive – compliance with the policy of distribution

▶ Balanced – keep all parts of the system occupied

▶ Batch systems:
▶ Productivity – maximize the number of jobs per hour

▶ Waiting time – minimize the time between issuance and termination of work

▶ CPU usage – keep the CPU busy all the time

▶ Interactive systems:
▶ Response time – respond to requests as quickly as possible

▶ Adjusted – meet the expectations of the users

▶ Real-time systems:
▶ Compliance with deadlines – avoid loss of data (when it is needed)

▶ Predictable – avoid degradation of quality in multimedia systems

ARCOS @ UC3M55

Alejandro Calderón Mateos

Process Scheduling
characteristics of scheduling algorithms (1/2)

▶Preemption:
▶Without:

▶ One process keeps CPU while it wants.

▶ Volunteer Context Switching (V.C.S.)

▶ [a/d] One process can block the full system but it easy to share resources

▶ Windows 3.1, Windows 95 (16 bits), NetWare, MacOS 9.x.

▶With:
▶ Some clock periodically interrupt:

◻ when the assigned quantum expires, another process is executed

▶ (It adds) Involuntary Context Switching (I.C.S.)

▶ [a/d] Better interactivity but it needs concurrency control mechanisms

▶ AmigaOS (1985), Windows NT-XP-Vista-7, Linux, BSD, MacOS X

ARCOS @ UC3M56

Alejandro Calderón Mateos

Process Scheduling
characteristics of scheduling algorithms (2/2)

▶Classification of elements in queues:

▶ By priority

▶ By type
▶ CPU-bound (more ‘burst’ of time using CPU)

▶ IO-bound (more ‘burst’ of time waiting I/O)

▶CPU-aware:

▶ Affinity:
▶ Processes have affinity to one CPU: «better come back to the same CPU»

▶ Symetry:
▶ Processes are executed in some CPU with specific capabilities

ARCOS @ UC3M57

A B C D

Alejandro Calderón Mateos

Process Scheduling
Main scheduling algorithms (1/3)

▶Round Robin:
▶ Rotary assignation of the processor

▶ A maximum processor time is assigned (quantum or quantum)

▶ Equitable but interactive:
▶ Better by UID than by process

▶ Linux:
◻ Introduced in 11/2010 one kernel patch that creates a task group by TTY in order to improve the interactivity in high loaded systems.

◻ 224 lines of codes that modifie the kernel scheduler and first tests shows that the average latency drops to 60 times (1/60).

▶Used in timeshare systems

ARCOS @ UC3M58 http://www.phoronix.com/scan.php?page=article&item=linux_2637_video&num=1

A B C D B C D A

•Larga:
• low context switchs
• Worst interactivity

Alejandro Calderón Mateos

Process Scheduling
Main scheduling algorithms (2/3)

▶Priority:
▶ CPU assigned to the highest priority process

▶ It can be combined with Round-Robin. Example with three priority classes.

▶ Characteristics:
▶ fixed priorities: problem of starvation
▶ Not fixed: use of some aging algorithm

▶ Use in timeshare systems with real-time aspects

ARCOS @ UC3M59

Priority 2

Priority 1

Priority 3

Alejandro Calderón Mateos

Process Scheduling
Main scheduling algorithms (3/3)

▶First the shortest work:
▶ Given a set of tasks that is known its total execution time, they are ordered from the lowest

to the longest.

▶ Features:
▶ [a] Produces the shortest response time (in average)

▶ [d] Penalize long works.

▶ Used in batch systems.

▶FIFO:
▶ Execution by the strict order of arrival.

▶ Features:
▶ [a] Simple to be implemented.

▶ [d] Penalizes priority tasks.

▶ Used in batch systems.

ARCOS @ UC3M60

Alejandro Calderón Mateos

Policy vs mechanism

▶Divide what can be done from how it can be done
▶Usually one process knows which one is the high priority thread, the one

with more I/O requests, etc.

▶To use parametrize scheduling algorithm
▶Mechanism is in the kernel

▶Parameters given by users processes
▶Policy set by user processes

ARCOS @ UC3M61

Alejandro Calderón Mateos

Multipolicy scheduling
Windows 2000 y Linux

ARCOS @ UC3M62 Sistemas operativos: una visión aplicada

31-16
16 R.T. levels

15 variable levels 15-1

1 system level

0-99

100-139

RT priorities

Conventional

process priorities

Windows 2000 Linux

CPU

I/O

CPU

I/O

0

Alejandro Calderón Mateos

Multipolicy scheduling
Windows 2000

ARCOS @ UC3M63 Sistemas operativos: una visión aplicada

31-16
16 R.T. levels

15 variable levels 15-1

1 system level

Windows 2000

CPU

I/O

0

Lesson 3b
process, devices, drivers, and extended services

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid

