ARCOS Group
Computer Science and Engineering Department
Universidad Carlos III de Madrid

Lesson 5 (b)

Memory Management

Operating System Design
Degree in Computer Science and Engineering, Double Degree CS&E + BA

Recommended readings

Base

1.

Carretero 2007:
Chapter 4

Recommended -

1.

Tanenbaum

2006(en):
Chapter 4

Stallings 2005:
Part three

Silberschatz 2006:
Chapter 4

Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Remember...

To study the associated theory.
Better study the bibliography readings because the slides are not enough.
To add questions with answers, and proper justification.

To review what in class is introduced.
To do the practical Linux task step-by-step.

To practice the knowledge and capacities.
To do the practical tasks as soon as possible.
To do as much exercises as possible.

Alejaé%%gi?er@n Hg;c:e%cl)\gI

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

4 Alejaﬁ%ﬁggir@n Hg;c:egc')\s/l

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

5 Alejaﬁ%ﬁ)cgg?%r@n Hg;c:egc')\s/l

Basic usage of memory
address, value, and size

00
01
02
03

222

Ox3F

‘ [»]Value

[»]Element stored in memory.

[»]Address
Place in memory.

[»]Size
[»]Number of bytes needed to stored
the value.

Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Basic usage of memory

functional interface

00
01
02
03

222

Ox3F

I&I

Value = read (Address)
write (Address, Value)

(Tip) Before to access into a address,
It must point to a memory area
previously allocated.

Alejaf%%(%g‘?&@n Hg;cgcl)\g

Basic usage of memory

functional interface

00
01
02
03

[P

222

Ox3F

I&I

Value = read (Address)
write (Address, Value)

(Tip) Before to access into a address,
It must point to a memory area
previously allocated.

=> Memory allocator

Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Memory management: memory allocator

memory allocator = Block

2 Alejahdro 15 @, HGEY

Memory management: memory allocator

memory allocator = Block + Interface

>]Allocate <« -+

[»|Free
[»] Allocate IEIResize _.l |
[»] Free «—>
»|] Resize
] Duplicate Duplication T
[»] Mapping >IDup

[»]Memory mapping \@

10 Alejahdro 15 @, HGEY

Memory management: memory allocator

memory allocator = Block + Interface + Metadata

[»] Allocate 4/// -
[»]Free
»] Allocate EResize _.l |
] [»] Free «—>
| [*] Resize
1 [J Duplicate [»]Duplication T
[»] Mapping

[»]Memory mapping \@

> 11 AeiabRE9%. @ HG3M

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

12 Alejaﬁ%ﬁ)cgg?%r@n Hg;c:egc')\s/l

Memory managers at several levels: Level 1

malloc
free

realloc
mmop Processes &

kernel memory

| [v] [¥] [v]

M

[

Allocate
Free
Resize
Duplicate

nnnnnnn

[kalloc
D]

[o1 71 [¥] [¥]

kernel

> 13 Alejah e ee S, MSEM

Memory managers at several levels: Level 2

/ Dynamic data

malloc /

free
realloc

kernel i
structure mmop Processes &
\ kernel memory

kalloc

| [v] [v] [¥]

M

[

Allocate
Free
Resize
Duplicate

nnnnnnn

[o1 71 [¥] [¥]

kernel

> 14 AeiabRE9%. @ HG3M

Memory management Scope: Level 1

>1In charge of memory
management for processes and
kernel.

Operating System Interface | [>1The rest of the operating system
| I is its best client:

v Process management

File Process Net
svsu;{4 ?7_1 File system (File management)
Viemory [~]But it reflects the needs of the

management

processes

15 Alejahdro 15 @ HG2N

Memory management architecture

old architecture

E Process >
y

Operating System Interface (syscalls API)
A

A 4

A

A 4

A

A 4

File system

Memory
management

Process
management

16

'

| Net

Aleja'r%%cég?&@n Hg;c:egcl)\gl

Memory management architecture

new architecture

E Process >
y

Operating System Interface (syscalls API)
A

A 4

File system

A Ar A
A 4 JV
Process | Net
management
\ :

Memory management

17

Aleja'r%%cég?&@n Hg;c:egcl)\gl

General goals of the memory mgmt.

1. Locating references of memory

Translate memory references into physical addresses

2. Protection of memory spaces

Forbid references between different processes

Operating System Interface

= = n 3. Sharing memory spaces
Allow multiple processes to access a common
| ! memory space area
. Process . . .
File System Mamt. o 4. Logic organization (of the process)
\ Process are divided into memory segments
\ 4

5. Physical organization (of memory)

Memory Mgmt. Fill memory with multiple process and segments

18 http://doursat.free.fr/docs/CS446_F05/CS446 _F05 3 Memoryl.pdf Al ejaﬁ\ﬁ&g&r@n HC3M

ateos

General goals of the memory mgmt.
1.- Locating references of memory

[»] The programmer does not have to know

where the program will be placed in memory

e Main memory
while it is executed. ek 7

A program can be executed several times, and e — rocess
each time it might be placed into a different , : P 2

" instructions
memory position

J \

stack

[~] As long as the program is executed it can

also be sent to disk and returned to memory data ~ process,

instructions

in a different position. Operating |

Syqtpm

[>] Therefore, logical memory references Disl
(relatives) must be translated into physical —
memory addresses (absolutes). | Executablefile |

19 http://doursat.free.fr/docs/CS446_F05/CS446 _F05 3 Memoryl.pdf Al eja'r%%cég@er@n HC3M

ateos

General goals of the memory mgmt.
2.- Protection of memory spaces

[»] Processes must not use memory locations

of other processes .
Main memory

Exception: debugger, ... stack R
: data ~ process,
>} Memory locations would have to be 7' EREET |
checked at runtime -
stack
It is not possible to check accesses to physical L
memory at compilation time. __data process,
instructions |
- perating
[»] Memory locations must be System

checked by hardware

The operating system cannot anticipate the
(calculated) memory references that a process is
going to perform.

20 http://doursat.free.fr/docs/CS446_F05/CS446 _F05 3 Memoryl.pdf Al eja'r%%(%g@er@n HC?’M

ateos

General goals of the memory mgmt.
3.- Sharing memory spaces

[»] Opposite to the previous point (apparently). Main Z::CTOW —
It must be possible for several processes to
access the same portion of memory: - (EE process,
instructions |
Processes running the same code could share the — -
same copy of code in memory Sac
Processes cooperating on the same task may need __data ~ process,
access to the same data structures. IS | .
Operating
System

[>] Must be explicitly requested and granted
Debugger, etc.

21 http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memoryl.pdf Al eja'r?c\i%(%9§e@n HC3M

ateos

General goals of the memory mgmt.
4.- Logic organization (of the process)

[»] The data of a process are not homogeneous

E.g.: code, local variables, etc. Mai
aln memory

Each information type has different needs stack R
Read, write, execution, etc. data ~ process,
Static or dynamic creation instructions
» | The information of a process (its image) is stack .
divided into different regions data ~ process;
Each region is adapted to a specific type of dat gsggl:;ttl:)r:]gs -
(code, dynamic variables, etc.) System

Unallocated zones (gaps) must be managed

[»] To manage the memory of a process is to
manage each of its regions.

22 Aleja'r%%cég?&@n Hg;c:egcl)\gl

General goals of the memory mgmt.
S.- Physical organization (of memory)

32 bits

[»] Be able to run a process when your memory .
. . : Main memory
image is larger than the main memory: £1) MB)

The parts of the process that are not used at the
moment are saved in disk. process,

[»] To be able to execute a set of processes whose
total memory size is greater than the main

memory size. %rocessl
perating

[~] Avoid losing memory by fragmentation: System

There is free physical memory but it is fragmented in Disk

non-contiguous spaces that the memory b
management system cannot take advantage of. ecombiofic]
Xecutable tie

23 Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

process,

Scope, architecture, and goals
summary

1. Locating references of memory

2. Protection of memory spaces

3. Sharing memory spaces

4. Logic organization (of the process)
5

| Operating System Interface |
A

4 A A
\4 v
. Process Net
File system Mgmt.
\ \ 4
Memory
Management
Sistemas operativos: una vision aplicada
24 Alejaf%%(%g‘?&@n Hg;cgcl)\g

http://doursat.free.fr/docs/CS446 FO05/CS446 FO5 3 Memoryl.pdf

Memory managers at several levels: Level 1

kernel <

structu res\

kalloc

25

malloc
free
realloc

rnmap

Allocate
Free
Resize
Duplicate

Mannino

/ Dynamic data

Processes &
kernel memory

~

kernel

Alejahdro 15 @, HGEY

Working with different memory spaces

[»]Segment table per process

[»]One|register|points to the table of the

current process

26

(HDisk)

Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Working with different memory spaces
paging segmentation

Pa
F

. | | |
Virtual address I I Phy. address I
| | L
S.ID | P.ID Offset | | Frame ID Offset]
I A
Register
l Pointer to the l |
I segment tableJ ! I
ment Page B
I > ibie . Table I Iﬁ
O
| J = | L]8 | >
V - [<5)
| I g | | 5? |
| | |
| | | AVAV
Program I g : I : l
egmentation Paging -
| mechanism | mechanism | Main memory

21 Alejaﬁbc‘j%%g?(?er@n Hg;cgcl)\g

ge
rame

General goals of the memory mgmt.

using virtual memory

Operating System Interface

A A A

\4 v

Process
Mgmt.

File system

NI

Memory
management

28

Net

1. Locating references of memory

MMU is responsible for translating a virtual space
into the real one

2. Protection of memory spaces
Each process access to its own memory space

3. Sharing memory spaces
Page table entries that point to the same page
frames

4. Logic organization (of the process)

Use of segmentation

5. Physical organization (of memory)
\/ Paged segmentation offer greater flexibility in the
memory organization

Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

29 Alejaﬁ%ﬁggir@n Hg;c:egc')\s/l

Memory managers at several levels: Level 1

kernel <

structu res\

kalloc

30

malloc
free
realloc

rnmap

Allocate
Free
Resize
Duplicate

Mannino

—

Dynamic data

Processes &
kernel memory

kernel

Alejahdro 15 @, HGEY

Dynamic memory management

»\Why dynamic memory is really so ‘fragile’?

acaldero@phoenix:~/infodso/$./ptr

Violacién de segmento

acaldero@phoenix:~/infodso/$

tarting pr

Program received signal SIGSEGV, Segmentation fault.
0xb7£79221 in ?? () from /lib/libc.so.6

31

Alejaﬁ%ﬁggir@n Hg;c:egc')\s/l

Header
freepe \
5|9
ala
Ox00 O

»|static Header base:
First element in the list

With zero size (in headers)

32

Example: libc storage allocator

typedef long Align; /* for alignment to long boundary */
union header { /* block header */
struct {
union header *ptr; /* next block if on free list */
unsigned size; /* size of this block */
}s;
Align x; [* force alignment of blocks */
%

typedef union header Header;

Aleja'r%ﬁ)cég?&@n Hg;c:egcl)\gl

Example: libc storage allocator

Imorecore

free /\
orbs \

—
4+

0x10 O /0xoo 18

freep->ptr

p
size
p

size

[»]morecore (int n_cab)

Sl (n_cab < min_ncab)
n_cab = min_ncab; // 144 bytes = 18 headers

freep->ptr = sbrk(n_cab*2*sizeof(int))
freep->ptr->ptr=null;
freep->ptr->size=n_cab;

33 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Example: libc storage allocator

malloc

free —\ /\
0)?05

N =1 I =Rl

ol 'a ol 5 al| 5

0x10 O 0x00 13 0x00 5

\ J J
f [
‘what rest from the morecore block’ ‘what malloc request’

L] * .
int *vi;
b S .
»]char *v2 ;

vl = malloc(8*sizeof(int)) ;

34 Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Example: libc storage allocator

malloc

freep 5—\ /\

—
)
[oX

[}
N

%]

ptr

o
o
\11 size

(O]
N
@
0

0x10 0x00 13 Ox

vl
rlint *v1;
»]char *v2 ;

vl = malloc(8*sizeof(int)) ;

35 Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Example: libc storage allocator

malloc

freep 5—\ /\

—
fras}
[oX

ptr

ptr

o
x
o
o
\l‘ Size
o
o
o

(O]
N
@
0

o | size
| size

0x10 0x00

v2

rlint *v1;
»]char *v2 ;

vl = malloc(8*sizeof(int)) ;
»]v2 = malloc(41) ;

36 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Example: libc storage allocator

internal fragmentation problem

free —\ /\
OEBS

0x10 O 0x00 6 0x00 7 0x00 5
6*8=48
v2
rlint *v1;
b S .
[~]char *v2; *| Allocation unit is 8 bytes (1
header of 2 integer/word)
: . (It is rounded up to multiple of a
»]vl = malloc(8*sizeof(int)) ; . P P
. allocation unit

»]v2 = malloc(41) ;
37 Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

Example: libc storage allocator

overwrite problem

ptr
ptr
ptr

o| size

o | size

o

o

o
\'. size

o

x

o

o
\n‘ size

v2 vl

[~1// it is allocated only 41 characters for v2
r[for (int i=0; i<64; i++)

v2[i]=X";
Ifree(v1) ;

38 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Example: libc storage allocator

overwrite problem

ptr
ptr

o

x

(@)

o
\IA size

ptr
Slze

o| size
o | size

v2 vl

[~1// it is allocated only 41 characters for v2
I [»Ifor (int i=0; i<64; i++)
v2[i]=X";
Ifree(v1) ;

39 Aleja'r?c‘iﬁ)c&g?&@n Hg;c:egcl)\gl

Example: libc storage allocator

overwrite problem

freep 5—\ /\

—
)
[oX

ptr

o

x

o

o
\l‘ Size

(O]
N
@
0

o | size
| ptr

\1 size

0x10 0x00

v2 vl

[~1// it is allocated only 41 characters for v2
[»for (int i=0; i<64; i++)
v2[i] =X
[»]free(v1) ; <- unable to recover the valid header... SIGSEV

40 Aleja'r?c‘iﬁ)c&g?&@n Hg;c:egcl)\gl

Example: libc storage allocator
other typical problems

freep —— /\
0565

—
fras}

ptr
size
ptr

o

x

o

o
\L

)
\J. size

p

(O]
N
*

0

p
o | size

0x10 0x00

v2 vl

[>]Free a non-dynamic memory area:
int i; free(&i);
[~|Free two times the same memory area

[>]Access to a memory area that still was not requested
char *pchar; printf("%s",pchar);

4 Alejahde 15 @ HG2

Example: libc storage allocator

free

ptr
ptr
ptr

o

x

o

o
\ size

o

o

o
\11 size

o| size

o | size

v2 vl

[»]free(v1) ;

42 Aleja'r?c‘j%(%g&r@)n Hg;cgcl)\s/l

Example: libc storage allocator

free
S /\ /_\

—
+—
o

—
)
[oX

ptr

o
x
o
o
\L size
o
o
o

ptr

o size

o | size
| size

0x10 0x78

v2

[»]free(v1) ;

43 Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Example: libc storage allocator

external fragmentation pro

free —\ /\
OEBS

—
fras}

p
ptr
size
ptr

(O]
N
@
0

p
o | size

~N

0x78 0x00 0x00
7*8=56 5%8=40

»v1 = malloc(20*sizeof(int)) ; // 20*4 = 80 bytes

[>] Over time, several malloc+free calls left many empty holes between used blocks.
Slow search in linked list

There are free space to satisfy one request, but not in a single piece block

44 Alejahde 15 @ HG2

Libc storage allocator

1) Main problems
P T——TE——"rm—— Internal and external fragmentation
I Overwrite metadata
Free non-allocated memory

Free two times the same allocated memory

2) Any advantages?
Simple?
Fast?

45

Alejaﬁ%ﬁ)cég&@n Hg;c:egcl)\gl

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

46 Alejaﬁ%ﬁggir@n Hg;c:egc')\s/l

Memory managers at several levels: Level 1

/ Dynamic data
malloc .

< free
kernel realloc

mmop Processes &

structure
S\ kernel memory
kalloc Allocate
Free
Resize
Duplicate

Mannino

kernel

4 Alejahdro 15 @, HGEY

Memory management in the kernel

»|With less external fragmentation and less overload in the
compaction: the buddy memory allocator

u] 128k 256k 512k

1024k

atart 1024k
A=TOK A 128 256 512
B=35K A B | &4 256 512
C=ROK 2 BE | &4 < 128 512
A ends 128 E | &4 < 128 512
D=60K 128 E I o 128 512
Bends | 128 54 | I o 128 51z
D ends 256 o 128 512
< ends 51z 51z

end 1024k

48 https://secure.wikimedia.org/wikipedia/en/wiki/Buddy_memory_allocation Alejaﬁ%ﬁ)%9§e@n ch:egcl)\gl

The memory management kernel

[*]Many kernels use the slab allocation
E.g.: Solaris, FreeBSD, Linux, etc.

»|Based on Mach’s zone allocator

[~]It pre-assign portions of memory for common (and more frequently
used) data types
Easier to find a free portion, and natural memory compaction after freeing
In this conditions is more efficient and avoids many memory fragmentation

[+]Itis possible to see how the kernel is using it by:

cat /proc/slabinfo

49 * http://www.ibm.com/developerworks/linux/library/I-linux-slab-allocator/ . R) C3M
* http://www.arl.wustl.edu/~fredk/Courses/cse522/fall03/Lectures/kmem.ppt Ale]aﬁac‘iroc&g?&@n Hateos

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

50 Alejaﬁ%ﬁggir@n Hg;c:egc')\s/l

Memory managers at several levels: Level 1

kernel <

structu res\

kalloc

o1

malloc
free
realloc

rnmap

Allocate
Free
Resize
Duplicate

Mannino

/ Dynamic data

_ Processes &
kernel memory

~

kernel

Alejahdro 15 @, HGEY

Operations on regions
create region

[»] Main memory is not assigned to new region (loaded by demand)

Region pages are marked as invalid

»] Depending on the kind of support:

Soporte on file
Pages are marked as Load From File (LFF)
There is stored the address of the corresponding disk block

Without support
For safety, pages are marked as Fill with Zeros (FC)
Page fault does not imply to read from device

[»1 Once a region is created, when a modified page is expelled
If region is private then it is written in swap
If region is shared then it is written in support file area

] Stack is “special”: must contain the program arguments

Arguments are typically copied in swap block(s)

52 Sistemas operativos: una visién aplicada

Aleja'r?c‘iﬁ)cég?&@n H

C3M

ateos

Operations on regions
free region

»|Update region table to remove region

»|Mark associated pages as invalid

»|If region is private then the associated swap space is freed up

»|Release/free an area may be due to:
Explicit request (E.g.: memory unmap)
Process termination (E.g.: EXIT on POSIX)

EXEC on POSIX release the current process map before building a
new map linked to the executable be ‘exec’

53 Sistemas operativos: una visién aplicada Aleja'r?c\irocé9§el@n Hg;c:egos

Operations on regions
resize region (change its size)

[+]If it decrease then similar to release but only one part affected

[»]If it increases in size:
Check for overlapping (to avoid it)
If pre-allocation then allocated swap space for the new pages

[~]Special cases:

Expansion of heap and mapped files
Requested by program through O.S. system calls
Expansion of stack is more complex: it is “automatic”
Program decrease SP value and accesses expanded zoe
Page fault

Page fault treatment:

If address is really invalid
If address < SP —> abort process and send signal
If not — expasion of stack

54 - os: una visién apli RCOS @
Sistemas operativos: una vision aplicada Aleja'r?c\irocég?§er 4h H

C3M

ateos

Operations on regions
copy-on-write (lazy copy)

[>]Required for FORK in UNIX

Costly and non-efficient operation: all content must be copied
[»]Optimization: copy-on-write (COW)

Duplicate region pages are shared but:

are marked read-only and COW bit set
first write — protection exception — private copying
There can be several processes with the same duplicated region
There is one usage counter per page
Each time a private copy is created it decrements the counter
If it reaches 1then COW bit is reset (there are no duplicates)

FORK now does not duplicate memory content, only the Page Table

95 Sistemas operativos: una visién aplicada Aleja'r?c\irocé9§el@n Hg;c:egos

Operations on regions
files mapped in memory

[]Program requests map a file (or part) in its image
Program can specify protection level and if it is private or shared

[+]O.S. fill corresponding page/segment entries with:
Non-resident, LFF

Private/Shared and protection, as specified by mmap system call
TP entries refers to a user file

[»]It is used as:
Alternative form of file access for read/write data
Loading dynamic libraries
Globally: generalization of virtual memory (more explicit access to it)

56 Sistemas operativos: una visién aplicada Aleja'nac\iroqg§el@n H\g;cgos

Operations on regions w

deduplication of a region

[>]lcopy-on-write (COW) seeks to share pages between father and
son processes to avoid duplicate pages with the same content.

When it is modified is when a copy is made and that copy is modified with
the new content.
[>]Deduplication (KSM) seeks to share pages between unrelated
processes to avoid duplicate pages with same content.

When two pages with same content are detected then the page/segment
table is updated to share them.

When the page is going to be modified then a copy is made and that copy
is modified. Then the page/segment table is updated with the new page.

o7 http://en.wikipedia.org/wiki/Kernel_same-page_merging Aleja'r?c\i%%9§el@n HC:%M

ateos

Memory managers at several levels
resumen

/ Dynamic data
malloc /

free
realloc

Kernel data i
e —— Processes
structure :
memory

\

[»] kalloc | Allocate
D] »| Free
[>]
[>]

| [v] [v] [¥]

M

[

Resize

Duplicate
] '~ Mapping

> 58 Alejahdro 15 @, HGEY

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

Kernel/Processes
Parameters
Extended aspects

59 Alejaﬁ%ﬁ)cég&@n Hg;c:egcl)\gl

Memory Space: process + kernel

[»]Each process ‘see’ a lineal and flat address space
Each process could access to all available memory space

Oxffffffff

Process
(4 GB)

0x00000000

60 http://www.cs.rutgers.edu/~pxk/416/notes/content/09-memory_management-slides-6.pdf Aleja'r?c\i%(%9§e@nHC3M

ateos

Memory Space: process + kernel

[>]Space used by kernel is mapped (and shared) by all processes

It does not change in context switching

] The kernel space is protected (read, no write, and execution)

Faster system calls because avoid to change mode (u—k and k — u)

Kernel

| (1 GB)

Process
(3 GB)

Oxffffffff

0x00000000

Process
(3 GB)

Kernel

(+GB)

Oxffffffff

0x00000000

61 http://www.cs.rutgers.edu/~pxk/416/notes/content/09-memory_management-slides-6.pdf Alejaéﬁjcég?&r@nﬂ(::g'\/'

ateos

Memory Space: process + kernel

Windows

[»|Configurable division: /3GB

Kernel

A

ernel

/ ad
J

(2 GB)

Process
(2 GB)

~~
—

R)
d

Process
(3 GB)

[»] Extensible space: /PAE

Kernel

A~

erne

(2 GB)

Process
(2 GB)

32 bits

o]
y A

A

V'l »]
1=

~~

Process
(62 GB)

62

36 hits

http://www.performancewiki.com/windows-tuning.html

General I Computer Mame

Startup and Recovery

Syskem startup
Defaulk opserating system:
Eirehones

Server 2003, Enberprise” [Fastdetect [FAE (356

0 EI: seconds

[Time to dsplay recovery options when nesded: | =0 E: seconds

[V Time to dsplay st of operating systems:

To adit the startup options File manually, chick Edit. Edi

—Sysbem Failre
[+ wwrite an event bothe swstem lag
[* Send an administrative alert

¥ Auromaticalty restart

Write debugging information

|k'emsf| memory dump _ll

Dumg File:
| vaSystemRoot L \MEMORY . DMP

W Onverwrite amy existing File

I Ok I Cancel

Aleja'r%ﬁ)cég?&@n Hg;c:egcl)\gl

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

Kernel/Processes Page size
Resident set

Parameters Degree of multiprogramming

Extended aspects

63 Alejaﬁ%ﬁ)cgg?&r@n Hg;c:egcl)\gl

Working with different memory spaces

Process 3 |:|

[

=

Process 2

i
T
]

Process 1 El — [] - El

64 Alejahdr TP SV

Main parameters (1/4)

[»]Segment table per process

[»]One|register|points to the table of the
current process

[~] Degree of multiprogramming:
number of processes in memory at a given
moment in time

[>]Resident set:
number of pages of one process in main
memory at a given moment in time

»] Page size:
Page size in bytes (usually at system level)

65

——
o
TP. 1 —
/L
= o I
rp.2 AM)
(HDisk)

Alejaﬁ%ﬁ)cég&@n Hg;c:egcl)\gl

Main parameters (2/4)

Typical behavior of paging in a program.
[»]0.S. has to balance: A

The number of processes in memory
(Degree of multiprogramming)

The number of pages in main memory
each process has (Resident set) with the
minimal number it requires to work
(Working set) !

(a) Page size

Page Fault Rate

Y

The Page size.

Size of Page Table, transfer with secondary P = Size of the whole process

memory, number of page Faults, etc. W = Size of the working set
N = Total number of pages of the process

66 Alejaﬁaﬁﬁ)qg?%r@n Hg;c:eac')\s/l

Main parameters (3/4)

Typical behavior of paging in a program.
[»]0.S. has to balance: A

The number of processes in memory
(Degree of multiprogramming)

The number of pages in main memory
each process has (Resident set) with the
minimal number it requires to work
(Working set)

The Page size.

Size of Page Table, transfer with secondary P = Size of the whole process

memory, number of page Faults, etc. W = Size of the working set
N = Total number of pages of the process

Page Fault Rate

Y

w N
(b) Number of page frames

67 Alejaﬁaﬁﬁ)qg?%r@n Hg;c:eac')\s/l

Main parameters (4/4)

Typical behavior of paging in a program.
»]0.S. has to balance:

4
100 % | mmmmmmmmm oo o e e e

The number of processes in memory 5
. . D g
(Degree Of multlprogrammlng) S Limitado por el dispo’s’i.tivo
A 35 de paginacion
Swapping: S
High transfer of information between Main %
Memory and Secondary Memory. =
HvperPaging: Nivel de Multiprogramacion
Yperraging: MEMORIA GRANDE
It occurs when the number of page faults
is very high.

The system spends more time exchanging
fragments than executing user instructions.

68 Aleja'r?c‘iﬁ)cég(%@n Hg;c:egcl)\gl

Solutions for thrashing (1/2)

»|Solutions with local replacement
Working set group strategy

Try to know the working set of each process

If working set decrease => free page frames

If working set increase => alloc more page frames
If there is not frames available: suspend processes
Processes are resumed when free frames are available again for the working set

Fault frequency-based strategy
If fault rate < lower limit => free page frames

If fault rate > upper limit => alloc page frames
If there is not free page frames => suspend some processes

- vos: una visién apl R 3M
69 Sistemas operativos: una visién aplicada Aleja'nac\iroc&9§e@n Hg;ceos

Solutions for thrashing (2/2)

»|Solutions with global replacement
There are no proper solutions.

BSD: buffering daemon activated by threshold.
If frequently activated -> suspend some process.
General idea: keep a reserve of free frames.

If number of free frames < threshold

“page daemon” repeatedly applies the replacement algorithm:
unmodified pages go to list of free frames
modified pages go to list of modified frames

If a page of the lists is referenced, it is used directly.

70 Sistemas operativos: una visién aplicada Aleja'r%rocé9§ercg)n Hg;c:egos

Ideas so reduce hyperpagination...
MacOS

Compressed Memory
For an even quicker, more responsive Mac.

After memory compression DOIng maore.

-- The more memory your Mac has at its disposal, the faster it

works. But when you have multiple apps running, your Mac
uses more memory. With OS5 X Mavericks, Compressed
Memory allows your Mac to free up memory space when
Inactive Active Free Space you need it most. As your Mac approaches maximum
memory capacity, OS X automatically compresses data from

inactive apps, making more memory available.

Responsiveness under load* Extra fast_
Once the memory is compressed, your Mac doesn’t have to
waste time continually transferring data back and forth
between memory and storage. So it’s able to get more done
in less time. And since compressing and decompressing
Wake from standby* happens almost instantly, the only thing you’ll notice is

how responsive everything feels. Especially when you're
doing everything at once.

05 X Mountain Lion Easeline

View the OS X Mavericks Core Technologies Overview »

> 71 . i ion-revi R C3M
http://www.zdnet.com/mavericks-memory-compression-review-7000022515/ Aleja’r?c‘]ro%9§el@n Hateos

Overview

1) Introduction
Memory allocator
Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management guidelines

Kernel/Processes

Parameters Page/segment table

Extended aspects Movement of page/segments

12 Alejaﬁ%ﬁ)cég&r@n Hg;c:egcl)\gl

Virtual Memory Systems

| D |

- 2%

CON o i |
Virtual : -
adrdr(jss @ : S |

= <
. ' N S;\ndarv M
Virtual M. : L
T // T \\
Table of Movements of Page fault
page/segments page/segments

73 Alejahdro 15 @, HGEY

Page Table entries (rows)
Typical format

Virtual address
Page ID Offset
/

s
-

/" Entry (row) in the Page Table

\
\

"*P M Another control bits Frame ID

*Bit P: indicates if associated page is present in main memory
*Bit M: indicates if page content has been modify in main memory
*Other bits: protection (read, write, execute, etc.), mgmt. (cow, etc.)

4 Alejahde 15 @ HG2

Segment Table entries (rows)
Typical format

Virtual address
Segment ID | Offset
y]

f Table segment entry

"> P_M__ Another control bits Length Segment base address

*Bit P: present in main memory
*Bit M: copy in main memory has been modified
*Another control bits: R,W,X,COW,...

7 Alejahde 15 @ HG2

Table entries (rows)
Typical format

Virtual address
Seqmgnt ID | Page ID | Offset

-® I

e

-

/7

’ i Segment Table !

\ /
~ P_M __ Another control bits Length Segment base address
EntryintheS.T. -~~~ /
S /

¥
.: Page Table (of previous segment)

\
\
*P M Another control bits Frame 1D
Entry in the P.T.

76 Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Page Table management

»|Initially:

O.S. creates when is going to execute one application.

»|Used by:

MMU uses it in the translation process (Vir.A. -> Phy.A.).

»|Updated by:

O.S. updates page tables in the page fault handler routine.

" Alejahdro 15 @, HGEY

Movements of segments
>1Initially:

It is defined in the executable file of the application (defines process memory layout)
Code (text) is loaded, stack is initialized, etc.

»]From secondary mem. to main mem. (by demand):

Access to non-resident segment: segment fault
The O.S. read the segment from secondary mem. and takes it to main mem.

[>]From main mem. to secondary mem. (by expulsion):
There is no enough space in main mem. to load the segment in
An already resident segment is replaced by
O.S. save the released segment into secondary mem. (if M bit is set to 1)

8 Alejaf%%(%g&r@)n Hg;cgcl)\s/l

Movements of pages
>1Initially:

Non-resident page is marked as missing
The O.S. saves the swap block id. where the page is stored

>]From secondary mem. to main mem. (by demand):

Access to non resident page: Page fault
The O.S. read the page from secondary mem. and takes it to main mem.

[>]From main mem. to secondary mem. (by expulsion):
There is no enough space in main mem. to load the page in
An already resident page is replaced
O.S. save the released page into secondary mem. (if M bit is set to 1)

9 Aleja'r?c‘i%c&g?&@n Hg;c:egcl)\gl

(general) Page Fault Handling

[+]If invalid address -> aborts process or sends signal
[»]If there is no free frame (see frames table)

Victim selection (replacement alg.): page P frame M
Mark P as invalid

If P has been modified (M bit of P is active)
Starts write request of P in secondary memory

[+]If there is free frame (free available or it has been released previously):
Start reading page in frame M
Mark page entry as valid, referencing to M
Set M as occupied in the frames table (if it wasn't)

80 Sistemas operativos: una visién aplicada Aleja'r?c\irocé9§el@n Hg;c:egos

Movement of pages
[>]Initially:

Non-resident page is marked as missing

Page entry stores the address of the swap block containing it

[»]From secondary mem. to main mem. (by demand):

Access to non resident page: Page fault
O.S. reads page from Secondary M. to Main M.

[>]From main mem. to secondary mem. (by expulsion):

There is no space in Main M. to bring page back

A resident page is expelled (replaced) Hardware

If bit M=1then O.S. writes expelled page to Secondary M.

81 Aleja'r?c‘iﬁ)c&g?&@n Hg;c:egcl)\gl

Management Policies

[~]Replacement Policy:
Local replacement: within the process
Global replacement

] Replacement algorithms: valid for local and global
Optimum
FIFO

Clock (or second change)
LRU

[~]Policy for assigning frames to processes:

Fixed allocation (always with local replacement):
Resident set of process is constant

Dynamic assighment (local or global replacement):
Resident set of process is variable

82 Aleja'r%%cég?&@n Hg;c:egcl)\gl

No Replacement Algorithms

[»]Locking of frames:

When a frame is locked, the loaded page
in that frame cannot be replaced.

>]Examples of when a frame is locked:
The majority of the operating system kernel.

Control structures.
/O buffers (E.g.: the one used for DMA).

[~]Locking is achieved by associating a blocking bit to each frame.
B P M Another control bits) Frame ID

83 Aleja'r%%cég?&@n Hg;c:egcl)\gl

Replacement Algorithms

>]Which page will be replaced.

[>1The page to be replaced must be the one that has the least
chance of being referenced in the near future..

[>]Most policies try to predict future behavior based on past
behavior (heuristics).

>]Example of policies: LRU, FIFO, etc.

84 Aleja'r?c‘iﬁ)cég?&@n Hg;c:egcl)\gl

Basic replacement Algorithms

»|Optimal policy:

Selects to replace the page that has to wait a longer amount of
time until the following reference occurs.

Impossible to implement because it requires the operating system
to have accurate knowledge of future events.

85 Alejaﬁbc‘j%%g?(?er@n Hg;cgcl)\g

Basic replacement Algorithms

»|Less recently used' policy (LRU):

Replaces the memory page that has not been referenced for a
long time.

Due to the closeness principle, this would be the page with the
least probability of being referenced in the near future.

One solution would be to tag each page with the timestamp of its
last reference.

86 Alejaﬁbc‘i%(%g‘?&@n Hg;cgcl)\g

Basic replacement Algorithms

87

»|First in, first out' policy (FIFO):

Replace the page in memory that was first loaded
(the which one that has been longer time in memory)

These pages may be needed again and in a short period of time.

One of the easiest replacement policies to implement:

Treats the frames assigned to a process as a circular buffer.
Pages are deleted from memory according to the round-robin technique.

Aleja'r?c‘iﬁ)c&g?&@n Hg;c:egcl)\gl

ARCOS Group
Computer Science and Engineering Department
Universidad Carlos III de Madrid

Lesson 5 (b)

Memory Management

Operating System Design
Degree in Computer Science and Engineering, Double Degree CS&E + BA

