
Lesson 5 (b)
Memory Management

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid



Alejandro Calderón Mateos

Recommended readings

ARCOS @ UC3M2

1. Carretero 2007:
1. Chapter  4

1. Tanenbaum 
2006(en):

1. Chapter  4

2. Stallings 2005:
1. Part three

3. Silberschatz 2006:
1. Chapter  4

Base Recommended



Alejandro Calderón Mateos

Remember…

ARCOS @ UC3M3

1. To study the associated theory.
▶Better study the bibliography readings because the slides are not enough.
▶To add questions with answers, and proper justification.

1. To review what in class is introduced.
▶To do the practical Linux task step-by-step.

2. To practice the knowledge and capacities.
▶To do the practical tasks as soon as possible.
▶To do as much exercises as possible.



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M4



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M5



Alejandro Calderón Mateos

Basic usage of memory
address, value, and size

▶Value
▶Element stored in memory.

▶Address
▶Place in memory.

▶Size
▶Number of bytes needed to stored 

the value.
…

00
01
02
03

…

‘a’
222
0x3F
‘&’

ARCOS @ UC3M6



Alejandro Calderón Mateos

Basic usage of memory
functional interface

▶Value = read (Address)
▶write (Address,  Value)

(Tip) Before to access into a address, 
it must point to a memory area 
previously allocated. 
=> Memory allocator

…

00
01
02
03

…

‘a’
222
0x3F
‘&’

ARCOS @ UC3M7



Alejandro Calderón Mateos

Basic usage of memory
functional interface

▶Value = read (Address)
▶write (Address,  Value)

(Tip) Before to access into a address, 
it must point to a memory area 
previously allocated. 
=> Memory allocator

…

00
01
02
03

…

‘a’
222
0x3F
‘&’

ARCOS @ UC3M8



Alejandro Calderón Mateos

Memory management: memory allocator

ARCOS @ UC3M9

memory allocator = Block



Alejandro Calderón Mateos

Memory management: memory allocator

ARCOS @ UC3M10

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

memory allocator = + InterfaceBlock

▶Allocate

▶Free

▶Resize

▶Duplication

▶Memory mapping



Alejandro Calderón Mateos

Memory management: memory allocator

ARCOS @ UC3M11

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

memory allocator = + Metadata Block +

▶Allocate

▶Free

▶Resize

▶Duplication

▶Memory mapping

Interface



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M12



Alejandro Calderón Mateos

Memory managers at several levels: Level 1

ARCOS @ UC3M13

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

Memory managers at several levels: Level 2

ARCOS @ UC3M14

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

kernel 
structures

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

Memory management Scope: Level 1

▶In charge of memory 
management for processes and 
kernel.

▶The rest of the operating system 
is its best client:
▶Process management
▶File system (File management)

▶But it reflects the needs of the 
processes

15

File 

system

Operating System Interface

Memory 

management

Process 

mngt.
Net

Process

ARCOS @ UC3M



Alejandro Calderón Mateos

Memory management architecture
old architecture

16

File system

Operating System Interface (syscalls API)

Memory 

management

Process 

management
Net

Process

ARCOS @ UC3M



Alejandro Calderón Mateos

Memory management architecture
new architecture

17

File system

Operating System Interface (syscalls API)

Memory management

Process 

management
Net

Process

ARCOS @ UC3M



Alejandro Calderón Mateos

General goals of the memory mgmt.

1. Locating references of memory
▶ Translate memory references into physical addresses

2. Protection of memory spaces
▶ Forbid references between different processes

3. Sharing memory spaces
▶ Allow multiple processes to access a common 

memory space area

4. Logic organization (of the process)
▶ Process are divided into memory segments

5. Physical organization (of memory)
▶ Fill memory with multiple process and segments

18

File System

Operating System Interface

Memory Mgmt.

Process 

Mgmt.
Net

process

http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memory1.pdf ARCOS @ UC3M



Alejandro Calderón Mateos

General goals of the memory mgmt.
1.- Locating references of memory

▶ The programmer does not have to know 
where the program will be placed in memory 
while it is executed.
▶ A program can be executed several times, and  

each time it might be placed into a different 
memory position

▶ As long as the program is executed it can 
also be sent to disk and returned to memory 
in a different position.

▶ Therefore, logical memory references
(relatives) must be translated into physical 
memory addresses (absolutes).

19 http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memory1.pdf

instructions

data

stack

Operating 

System

instructions

data

stack

Main memory

process1

process2

Disk

Executable file

ARCOS @ UC3M



Alejandro Calderón Mateos

General goals of the memory mgmt.
2.- Protection of memory spaces

▶ Processes must not use memory locations 
of other processes
▶ Exception: debugger, …

▶Memory locations would have to be 
checked at runtime
▶ It is not possible to check accesses to physical 

memory at compilation time.

▶Memory locations must be 
checked by hardware
▶ The operating system cannot anticipate the 

(calculated) memory references that a process is 
going to perform.

20 http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memory1.pdf

instructions

data

stack

Operating 

System

instructions

data

stack

Main memory

process1

process2

ARCOS @ UC3M



Alejandro Calderón Mateos

General goals of the memory mgmt.
3.- Sharing memory spaces

▶Opposite to the previous point (apparently). 
It must be possible for several processes to 
access the same portion of memory:
▶ Processes running the same code could share the 

same copy of code in memory

▶ Processes cooperating on the same task may need 
access to the same data structures.

▶Must be explicitly requested and granted
▶ Debugger, etc.

21 http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memory1.pdf

instructions

data

stack

Operating 

System

instructions

data

stack

Main memory

process1

process2

ARCOS @ UC3M



Alejandro Calderón Mateos

General goals of the memory mgmt.
4.- Logic organization (of the process)

▶The data of a process are not homogeneous 
▶ E.g.: code, local variables, etc.

▶ Each information type has different needs 
▶ Read, write, execution, etc.

▶ Static or dynamic creation

▶The information of a process (its image) is 
divided into different regions
▶ Each region is adapted to a specific type of dat 

(code, dynamic variables, etc.)
▶ Unallocated zones (gaps) must be managed

▶To manage the memory of a process is to 
manage each of its regions.

22

instructions

data

stack

Operating 

System

instructions

data

stack

Main memory

process1

process2

ARCOS @ UC3M



Alejandro Calderón Mateos

Operating 

System

Main memory
(512 MB)

process1

General goals of the memory mgmt.
5.- Physical organization (of memory)

▶ Be able to run a process when your memory 
image is larger than the main memory:
▶ The parts of the process that are not used at the 

moment are saved in disk.

▶ To be able to execute a set of processes whose 
total memory size is greater than the main 
memory size.

▶ Avoid losing memory by fragmentation:
▶ There is free physical memory but it is fragmented in 

non-contiguous spaces that the memory 
management system cannot take advantage of.

23 ARCOS @ UC3M

Executable file

Disk
(1 TB)

32 bits
(4 GB)

process2

process3



Alejandro Calderón Mateos

Scope, architecture, and goals
summary

1. Locating references of memory
2. Protection of memory spaces
3. Sharing memory spaces
4. Logic organization (of the process)
5. Physical organization (of memory)

24

File system

Operating System Interface

Memory 

Management

Process 

Mgmt.
Net

process

Sistemas operativos: una visión aplicada

http://doursat.free.fr/docs/CS446_F05/CS446_F05_3_Memory1.pdf
ARCOS @ UC3M



Alejandro Calderón Mateos

Memory managers at several levels: Level 1

ARCOS @ UC3M25

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

kernel 
structures

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

p

Working with different memory spaces

ARCOS @ UC3M26

p

(RAM)

T.P. 1

T.P. 2

(HDisk)
…

▶Segment table per process

▶One register points to the table of the 
current process



Alejandro Calderón Mateos

Register

Working with different memory spaces
paging segmentation

ARCOS @ UC3M27

S
eg

. 
ID

S.ID

Virtual address

P
a

g
e 

F
ra

m
e

Pointer to the 
segment table

Program Segmentation 
mechanism

Main memory

Offset

+

Phy. address

O
ff

se
t

P.ID

P
a
g
e 

ID

+

Segment 
Table

Page 
Table

Paging 
mechanism

Frame ID Offset



Alejandro Calderón Mateos

General goals of the memory mgmt. 
using virtual memory

1. Locating references of memory
▶ MMU is responsible for translating a virtual space 

into the real one

2. Protection of memory spaces
▶ Each process access to its own memory space

3. Sharing memory spaces
▶ Page table entries that point to the same page 

frames

4. Logic organization (of the process)
▶ Use of segmentation

5. Physical organization (of memory)
▶ Paged segmentation offer greater flexibility in the 

memory organization

28 ARCOS @ UC3M

File system

Operating System Interface

Memory 

management

Process 

Mgmt.
Net

process



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M29



Alejandro Calderón Mateos

Memory managers at several levels: Level 1

ARCOS @ UC3M30

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

kernel 
structures

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

Dynamic memory management

▶Why dynamic memory is really so ‘fragile’?

ARCOS @ UC3M31

acaldero@phoenix:~/infodso/$ ./ptr 

Violación de segmento

acaldero@phoenix:~/infodso/$ gdb ptr

GNU gdb (GDB) 7.2-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.  Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

Para las instructions de informe de errores, vea:

<http://www.gnu.org/software/gdb/bugs/>...

Leyendo sÃmbolos desde /home/acaldero/work/infodso/memoria/ptr...hecho.

(gdb) run

Starting program: /home/acaldero/work/infodso/memoria/ptr 

Program received signal SIGSEGV, Segmentation fault.

0xb7f79221 in ?? () from /lib/libc.so.6



Alejandro Calderón Mateos

Example: libc storage allocator
Header

▶static Header base:
▶First element in the list
▶With zero size (in headers)

ARCOS @ UC3M32

freep
0x05

p
tr

si
ze

0x00 0

typedef long Align;    /* for alignment to long boundary */

union header {         /* block header */

struct {

union header *ptr; /* next block if on free list */

unsigned size;     /* size of this block */

} s;

Align x;           /* force alignment of blocks */

};

typedef union header Header;



Alejandro Calderón Mateos

Example: libc storage allocator
morecore

▶morecore (int n_cab)
▶ SI (n_cab < min_ncab)

n_cab = min_ncab;  // 144 bytes = 18 headers
▶ freep->ptr = sbrk(n_cab*2*sizeof(int))

▶ freep->ptr->ptr=null;

▶ freep->ptr->size=n_cab;

ARCOS @ UC3M33

p
tr

si
ze

freep
0x05

0x00 18
p

tr

si
ze

0x10 0

freep->ptr



Alejandro Calderón Mateos

Example: libc storage allocator
malloc

▶int    *v1;
▶char *v2 ;

▶v1 = malloc(8*sizeof(int)) ;

ARCOS @ UC3M34

p
tr

si
ze

freep
0x05

0x00 13
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

‘what malloc request’‘what rest from the morecore block’



Alejandro Calderón Mateos

Example: libc storage allocator
malloc

▶int    *v1;
▶char *v2 ;

▶v1 = malloc(8*sizeof(int)) ;

ARCOS @ UC3M35

p
tr

si
ze

freep
0x05

0x00 13
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

v1



Alejandro Calderón Mateos

Example: libc storage allocator
malloc

▶int    *v1;
▶char *v2 ;

▶v1 = malloc(8*sizeof(int)) ;
▶v2 = malloc(41 ) ;

ARCOS @ UC3M36

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2



Alejandro Calderón Mateos

Example: libc storage allocator
internal fragmentation problem

▶int    *v1;
▶char *v2 ;

▶v1 = malloc(8*sizeof(int)) ;
▶v2 = malloc(41 ) ;

ARCOS @ UC3M37

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2

6*8=48

• Allocation unit is 8 bytes (1 
header of 2 integer/word)

• It is rounded up to multiple of a 
allocation unit 



Alejandro Calderón Mateos

Example: libc storage allocator
overwrite problem

▶// it is allocated only 41 characters for v2
▶for (int i=0; i<64; i++)
▶ v2[i] = ‘x’ ;

▶free(v1) ; 

ARCOS @ UC3M38

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2 v1



Alejandro Calderón Mateos

Example: libc storage allocator
overwrite problem

▶// it is allocated only 41 characters for v2
▶for (int i=0; i<64; i++)
▶ v2[i] = ‘x’ ;

▶free(v1) ; 

ARCOS @ UC3M39

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

? ?

p
tr

si
ze

0x00 7

v2 v1



Alejandro Calderón Mateos

Example: libc storage allocator
overwrite problem

▶// it is allocated only 41 characters for v2
▶for (int i=0; i<64; i++)
▶ v2[i] = ‘x’ ;

▶free(v1) ;  <- unable to recover the valid header… SIGSEV

ARCOS @ UC3M40

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

? ?

p
tr

si
ze

0x00 7

v2 v1



Alejandro Calderón Mateos

Example: libc storage allocator
other typical problems

▶Free a non-dynamic memory area:
▶ int i; free(&i);

▶Free two times the same memory area
▶Access to a memory area that still was not requested
▶ char *pchar;  printf("%s",pchar);

ARCOS @ UC3M41

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

? ?

p
tr

si
ze

0x00 7

v2 v1



Alejandro Calderón Mateos

Example: libc storage allocator
free

▶free(v1) ;

ARCOS @ UC3M42

p
tr

si
ze

freep
0x05

0x00 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2 v1



Alejandro Calderón Mateos

Example: libc storage allocator
free

▶free(v1) ;

ARCOS @ UC3M43

p
tr

si
ze

freep
0x05

0x78 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2



Alejandro Calderón Mateos

Example: libc storage allocator
external fragmentation problem

▶v1 = malloc(20*sizeof(int)) ; // 20*4 = 80 bytes

▶Over time, several malloc+free calls left many empty holes between used blocks.
▶ Slow search in linked list
▶ There are free space to satisfy one request, but not in a single piece block

ARCOS @ UC3M44

p
tr

si
ze

freep
0x05

0x78 6
p

tr

si
ze

0x10 0

p
tr

si
ze

0x00 5

p
tr

si
ze

0x00 7

v2

7*8=56 5*8=40



Alejandro Calderón Mateos

Libc storage allocator

1) Main problems
a) Internal and external fragmentation

b) Overwrite metadata

c) Free non-allocated memory

d) Free two times the same allocated memory

e) ...

2) Any advantages?
a) Simple?

b) Fast?

ARCOS @ UC3M45

acaldero@phoenix:~/infodso/$ ./ptr 

Violación de segmento

acaldero@phoenix:~/infodso/$ gdb ptr

GNU gdb (GDB) 7.2-ubuntu

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later 
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and 
redistribute it.

There is NO WARRANTY, to the extent permitted by law.  
Type "show copying"

and "show warranty" for details.



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M46



Alejandro Calderón Mateos

Memory managers at several levels: Level 1

ARCOS @ UC3M47

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

kernel 
structures

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

Memory management in the kernel

▶With less external fragmentation and less overload in the 
compaction: the buddy memory allocator

ARCOS @ UC3M48 https://secure.wikimedia.org/wikipedia/en/wiki/Buddy_memory_allocation



Alejandro Calderón Mateos

The memory management kernel

▶Many kernels use the slab allocation
▶ E.g.: Solaris, FreeBSD, Linux, etc.

▶Based on Mach’s zone allocator
▶It pre-assign portions of memory for common (and more frequently 

used) data types 
▶ Easier to find a free portion, and natural memory compaction after freeing 
▶ In this conditions is more efficient and avoids many memory fragmentation

▶It is possible to see how the kernel is using it by:
▶ cat /proc/slabinfo

ARCOS @ UC3M49 • http://www.ibm.com/developerworks/linux/library/l-linux-slab-allocator/
• http://www.arl.wustl.edu/~fredk/Courses/cse522/fall03/Lectures/kmem.ppt



Alejandro Calderón Mateos

Overview

1) Introduction
a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space
2) Dynamic memory allocator in kernel
3) Virtual memory allocator

1) Management policies and management  guidelines

ARCOS @ UC3M50



Alejandro Calderón Mateos

Memory managers at several levels: Level 1

ARCOS @ UC3M51

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

kernel 
structures

kernel

Processes & 
kernel memory



Alejandro Calderón Mateos

Operations on regions
create region

ARCOS @ UC3M52

▶Main memory is not assigned to new region (loaded by demand)
▶ Region pages are marked as invalid 

▶Depending on the kind of support:
▶ Soporte on file

▶ Pages are marked as Load From File (LFF)

▶ There is stored the address of the corresponding disk block

▶ Without support
▶ For safety, pages are marked as Fill with Zeros (FC)

▶ Page fault does not imply to read from device

▶Once a region is created, when a modified page is expelled 
▶ If region is private then it is written in swap 
▶ If region is shared then it is written in support file area

▶Stack is “special”: must contain the program arguments
▶ Arguments are typically copied in swap block(s)

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Operations on regions
free region

ARCOS @ UC3M53

▶Update region table to remove region
▶Mark associated pages as invalid
▶If region is private then the associated swap space is freed up

▶Release/free an area may be due to:
▶Explicit request (E.g.: memory unmap)
▶Process termination (E.g.: EXIT on POSIX)
▶EXEC on POSIX release the current process map before building a 

new map linked to the executable be ‘exec’

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Operations on regions
resize region (change its size)

ARCOS @ UC3M54

▶If it decrease then similar to release but only one part affected
▶If it increases in size:

▶ Check for overlapping (to avoid it)
▶ If pre-allocation then allocated swap space for the new pages

▶Special cases:
▶ Expansion of heap and mapped files

▶ Requested by program through O.S. system calls

▶ Expansion of stack is more complex: it is “automatic”
▶ Program decrease SP value and accesses expanded zoe

◻ Page fault

▶ Page fault treatment:
◻ If address is really invalid

◻ If address < SP –› abort process and send signal
◻ If not  –› expasion of stack

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Operations on regions
copy-on-write (lazy copy)

ARCOS @ UC3M55

▶Required for FORK in UNIX
▶Costly and non-efficient operation: all content must be copied

▶Optimization: copy-on-write (COW) 
▶Duplicate region pages are shared but:

▶are marked read-only and COW bit set

▶ first write  –› protection exception –› private copying

▶There can be several processes with the same duplicated region
▶There is one usage counter per page
▶Each time a private copy is created it decrements the counter
▶ If it reaches 1 then COW bit is reset (there are no duplicates)

▶FORK now does not duplicate memory content, only the Page Table

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Operations on regions
files mapped in memory

ARCOS @ UC3M56

▶Program requests map a file (or part) in its image
▶ Program can specify protection level and if it is private or shared

▶O.S. fill corresponding page/segment entries with:
▶ Non-resident, LFF
▶ Private/Shared and protection, as specified by mmap system call

▶ TP entries refers to a user file

▶It is used as:
▶ Alternative form of file access for read/write data
▶ Loading dynamic libraries
▶ Globally: generalization of virtual memory (more explicit access to it)

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Operations on regions
deduplication of a region

ARCOS @ UC3M57

▶copy-on-write (COW) seeks to share pages between father and
son processes to avoid duplicate pages with the same content.
▶When it is modified is when a copy is made and that copy is modified with

the new content.

▶Deduplication (KSM) seeks to share pages between unrelated
processes to avoid duplicate pages with same content.
▶When two pages with same content are detected then the page/segment

table is updated to share them.
▶When the page is going to be modified then a copy is made and that copy

is modified. Then the page/segment table is updated with the new page.

http://en.wikipedia.org/wiki/Kernel_same-page_merging



Alejandro Calderón Mateos

Memory managers at several levels
resumen

ARCOS @ UC3M58

▶ malloc
▶ free
▶ realloc
▶ mmap

código

stack

data estáticos

▶ Allocate
▶ Free 
▶ Resize
▶ Duplicate
▶ Mapping

▶ kalloc
▶ …

Dynamic data

Kernel data 
structures

kernel

Processes 
memory



Alejandro Calderón Mateos

Overview
1) Introduction

a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space

2) Dynamic memory allocator in kernel

3) Virtual memory allocator

1) Management policies and management  guidelines
a) Kernel/Processes
b) Parameters
c) Extended aspects

ARCOS @ UC3M59



Alejandro Calderón Mateos

Memory Space: process + kernel

▶Each process ‘see’ a lineal and flat address space
▶ Each process could access to all available memory space

ARCOS @ UC3M60

0x00000000

0xffffffff

http://www.cs.rutgers.edu/~pxk/416/notes/content/09-memory_management-slides-6.pdf

Process
(4 GB)



Alejandro Calderón Mateos

Memory Space: process + kernel

▶Space used by kernel is mapped (and shared) by all processes
▶ It does not change in context switching

▶The kernel space is protected (read, no write, and execution)
▶ Faster system calls because avoid to change mode (u→k and k → u)

ARCOS @ UC3M61 http://www.cs.rutgers.edu/~pxk/416/notes/content/09-memory_management-slides-6.pdf

Process
(3 GB)

Kernel
(1 GB)

0x00000000

0xffffffff

Process
(3 GB)

0x00000000

0xffffffff

Kernel
(1 GB)



Alejandro Calderón Mateos

Memory Space: process + kernel
Windows

▶Configurable división:  /3GB

▶Extensible space:  /PAE

ARCOS @ UC3M62 http://www.performancewiki.com/windows-tuning.html

Process
(3 GB)

Kernel
(1 GB)

Process
(2 GB)

Kernel
(2 GB)

Process
(62 GB)

Kernel
(2 GB)

Process
(2 GB)

Kernel
(2 GB)

36 bits32 bits



Alejandro Calderón Mateos

Overview
1) Introduction

a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space

2) Dynamic memory allocator in kernel

3) Virtual memory allocator

1) Management policies and management  guidelines
a) Kernel/Processes
b) Parameters
c) Extended aspects

ARCOS @ UC3M63

▪ Page size
▪ Resident set
▪ Degree of multiprogramming



Alejandro Calderón Mateos

Working with different memory spaces

64 ARCOS @ UC3M

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

…
…
…

Process 3

Process 2

Process 1

T



Alejandro Calderón Mateos

p

Main parameters (1/4)

ARCOS @ UC3M65

p

(RAM)

T.P. 1

T.P. 2

(HDisk)
…

▶Degree of multiprogramming:
number of processes in memory at a given 
moment in time

▶Resident set:
number of pages of one process in main 
memory at a given moment in time

▶Page size:
Page size in bytes (usually at system level)

▶Segment table per process

▶One register points to the table of the 
current process



Alejandro Calderón Mateos

▶O.S. has to balance:

▶ The number of processes in memory 
(Degree of multiprogramming)

▶ The number of pages in main memory 
each process has (Resident set) with the 
minimal number it requires to work 
(Working set)

▶ The Page size.

▶ Size of Page Table, transfer with secondary 
memory, number of page Faults, etc.

Main parameters (2/4)

ARCOS @ UC3M66

P =  Size of the whole process

W = Size of the working set

N = Total number of pages of the process

Typical behavior of paging in a program.



Alejandro Calderón Mateos

Main parameters (3/4)

ARCOS @ UC3M67

▶O.S. has to balance:

▶ The number of processes in memory 
(Degree of multiprogramming)

▶ The number of pages in main memory 
each process has (Resident set) with the 
minimal number it requires to work 
(Working set)

▶ The Page size.

▶ Size of Page Table, transfer with secondary 
memory, number of page Faults, etc.

Typical behavior of paging in a program.

P =  Size of the whole process

W = Size of the working set

N = Total number of pages of the process



Alejandro Calderón Mateos

Main parameters (4/4)

ARCOS @ UC3M68

▶O.S. has to balance:

▶ The number of processes in memory 
(Degree of multiprogramming)

▶ Swapping:

◻ High transfer of information between Main 
Memory and Secondary Memory.

▶ HyperPaging:

◻ It occurs when the number of page faults 
is very high.

◻ The system spends more time exchanging 
fragments than executing user instructions.

▶ …

Typical behavior of paging in a program.



Alejandro Calderón Mateos

Solutions for thrashing (1/2)

ARCOS @ UC3M69

▶Solutions with local replacement
▶Working set group strategy

▶Try to know the working set of each process
▶If working set decrease => free page frames 
▶If working set increase => alloc more page frames 

◻ If there is not frames available: suspend processes
◻ Processes are resumed when free frames are available again for the working set

▶Fault frequency-based strategy 
▶If fault rate < lower limit => free page frames 
▶If fault rate > upper limit => alloc page frames 

◻ If there is not free page frames => suspend some processes

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Solutions for thrashing (2/2)

ARCOS @ UC3M70

▶Solutions with global replacement
▶There are no proper solutions.
▶BSD: buffering daemon activated by threshold.

▶If frequently activated -> suspend some process.
▶General idea: keep a reserve of free frames.
▶If number of free frames < threshold

◻ “page daemon” repeatedly applies the replacement algorithm:
◻ unmodified pages go to list of free frames
◻ modified pages go to list of modified frames

▶If a page of the lists is referenced, it is used directly.

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Ideas so reduce hyperpagination…
MacOS

ARCOS @ UC3M71 http://www.zdnet.com/mavericks-memory-compression-review-7000022515/



Alejandro Calderón Mateos

Overview
1) Introduction

a) Memory allocator
b) Memory allocator hierarchy

1) Dynamic memory allocator in user space

2) Dynamic memory allocator in kernel

3) Virtual memory allocator

1) Management policies and management  guidelines
a) Kernel/Processes
b) Parameters
c) Extended aspects

ARCOS @ UC3M72

▪ Page/segment table
▪ Movement of page/segments



Alejandro Calderón Mateos

Virtual Memory Systems

ARCOS @ UC3M73

Virtual M. Main M. Secondary M.

Virtual 
address

MMU

1
2

3a 3b

Page faultTable of 
page/segments

Movements of 
page/segments



Alejandro Calderón Mateos

Page Table entries (rows) 
Typical format

ARCOS @ UC3M74

Page ID Offset

Entry (row) in the Page Table

P M Another control bits Frame ID

•Bit P:   indicates if associated page is present in main memory
•Bit M:  indicates if page content has been modify in main memory
•Other bits: protection (read, write, execute, etc.), mgmt. (cow, etc.) 

Virtual address



Alejandro Calderón Mateos

Segment Table entries (rows)
Typical format

ARCOS @ UC3M75

Segment ID Offset

Virtual address

Table segment entry

P M Another control bits Length

•Bit P:   present in main memory
•Bit M:  copy in main memory has been modified
•Another control bits: R,W,X,COW,…

Segment base address



Alejandro Calderón Mateos

Table entries (rows)
Typical format

ARCOS @ UC3M76

Segment ID

Virtual address

Segment Table

P M Another control bits Length Segment base address

Page ID Offset

Page Table (of previous segment)

P M Another control bits Frame ID

Entry in the P.T.

Entry in the S.T.



Alejandro Calderón Mateos

Page Table management

ARCOS @ UC3M77

▶Initially:
▶O.S. creates when is going to execute one application.

▶Used by:
▶MMU uses it in the translation process (Vir.A. -> Phy.A.).

▶Updated by:
▶O.S. updates page tables in the page fault handler routine.



Alejandro Calderón Mateos

Movements of segments

ARCOS @ UC3M78

▶Initially:
▶ It is defined in the executable file of the application (defines process memory layout)
▶ Code (text) is loaded, stack is initialized, etc.

▶From secondary mem. to main mem. (by demand):
▶ Access to non-resident segment: segment fault
▶ The O.S. read the segment from secondary mem. and takes it to main mem.

▶From main mem. to secondary mem. (by expulsion):
▶ There is no enough space in main mem. to load the segment in
▶ An already resident segment is replaced by

▶ O.S. save the released segment into secondary mem. (if M bit is set to 1)



Alejandro Calderón Mateos

Movements of pages

ARCOS @ UC3M79

▶Initially:
▶ Non-resident page is marked as missing
▶ The O.S. saves the swap block id. where the page is stored

▶From secondary mem. to main mem. (by demand):
▶ Access to non resident page: Page fault
▶ The O.S. read the page from secondary mem. and takes it to main mem. 

▶From main mem. to secondary mem. (by expulsion):
▶ There is no enough space in main mem. to load the page in
▶ An already resident page is replaced 

▶ O.S. save the released page into secondary mem. (if M bit is set to 1)



Alejandro Calderón Mateos

(general) Page Fault Handling

ARCOS @ UC3M80

▶If invalid address -› aborts process or sends signal
▶If there is no free frame (see frames table)
▶Victim selection (replacement alg.): page P frame M

▶Mark P as invalid
▶ If P has been modified (M bit of P is active)

▶Starts write request of P in secondary memory
▶If there is free frame (free available or it has been released previously):
▶Start reading page in frame M
▶Mark page entry as valid, referencing to M
▶Set M as occupied in the frames table (if it wasn't)

Sistemas operativos: una visión aplicada



Alejandro Calderón Mateos

Movement of pages

ARCOS @ UC3M81

▶Initially:
▶ Non-resident page is marked as missing

▶ Page entry stores the address of the swap block containing it

▶From secondary mem. to main mem. (by demand):
▶ Access to non resident page: Page fault

▶ O.S. reads page from Secondary M. to Main M. 

▶From main mem. to secondary mem. (by expulsion):
▶ There is no space in Main M. to bring page back

▶ A resident page is expelled (replaced)

▶ If bit M=1 then O.S. writes expelled page to Secondary M. 

Hardware 
Support 
Needed



Alejandro Calderón Mateos

Management Policies

ARCOS @ UC3M82

▶Replacement Policy:
▶ Local replacement: within the process
▶ Global replacement

▶Replacement algorithms: valid for local and global
▶ Optimum
▶ FIFO
▶ Clock (or second change)
▶ LRU

▶Policy for assigning frames to processes:
▶ Fixed allocation (always with local replacement): 

▶ Resident set of process is constant

▶ Dynamic assignment (local or global replacement): 
▶ Resident set of process is variable



Alejandro Calderón Mateos

B

No Replacement Algorithms

ARCOS @ UC3M83

▶Locking of frames:
▶When a frame is locked, the loaded page

in that frame cannot be replaced. 

▶Examples of when a frame is locked:
▶ The majority of the operating system kernel. 
▶Control structures.
▶ I/O buffers (E.g.: the one used for DMA).

▶Locking is achieved by associating a blocking bit to each frame. 

P M Another control bits Frame ID



Alejandro Calderón Mateos

Replacement Algorithms

ARCOS @ UC3M84

▶Which page will be replaced.

▶The page to be replaced must be the one that has the least 
chance of being referenced in the near future.. 

▶Most policies try to predict future behavior based on past 
behavior (heuristics). 

▶Example of policies: LRU, FIFO, etc.



Alejandro Calderón Mateos

Basic replacement Algorithms

ARCOS @ UC3M85

▶Optimal policy:

▶Selects to replace the page that has to wait a longer amount of 
time until the following reference occurs. 

▶Impossible to implement because it requires the operating system 
to have accurate knowledge of future events. 



Alejandro Calderón Mateos

Basic replacement Algorithms

ARCOS @ UC3M86

▶Less recently used' policy (LRU):

▶Replaces the memory page that has not been referenced for a 
long time. 

▶Due to the closeness principle, this would be the page with the 
least probability of being referenced in the near future. 

▶One solution would be to tag each page with the timestamp of its 
last reference. 



Alejandro Calderón Mateos

Basic replacement Algorithms

ARCOS @ UC3M87

▶First in, first out' policy (FIFO):

▶Replace the page in memory that was first loaded 
(the which one that has been longer time in memory)

▶These pages may be needed again and in a short period of time. 

▶One of the easiest replacement policies to implement:
▶ Treats the frames assigned to a process as a circular buffer.

▶ Pages are deleted from memory according to the round-robin technique.



Lesson 5 (b)
Memory Management

Operating System Design

Degree in Computer Science and Engineering, Double Degree CS&E + BA

ARCOS Group

Computer Science and Engineering Department

Universidad Carlos III de Madrid


