
Sistemas Paralelos y Distribuidos
Félix García Carballeira

Alejandro Calderón Mateos

Tolerancia a fallos

fetch

Ejemplos de sistemas que precisan ser
tolerantes a fallos

▪ Sistemas con una vida larga.

▪ Sistemas de difícil mantenimiento:

❑ Satélites, cohetes, etc.

▪ Aplicaciones críticas:

❑ Aviones, telemedicina, etc.

▪ Sistemas de alta disponibilidad:

❑ Sistemas bancarios, etc.

2

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Contenido

▪ Introducción a la tolerancia a fallos

▪ Tolerancia a fallos software

▪ Tolerancia a fallos en sistemas distribuidos

❑ Procesamiento: N-versiones, checkpoint, …

❑ Almacenamiento: replicación y consistencia, snapshots, …

❑ Comunicación: CRC, número de secuencia, retransmisión, …

3

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Contenido

▪ Introducción a la tolerancia a fallos

▪ Tolerancia a fallos software

▪ Tolerancia a fallos en sistemas distribuidos

❑ Procesamiento: N-versiones, checkpoint, …

❑ Almacenamiento: replicación y consistencia, snapshots, …

❑ Comunicación: CRC, número de secuencia, retransmisión, …

4

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

5

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

6

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ Un sistema es fiable si cumple sus especificaciones.

▪ La fiabilidad (reliability) de un sistema es una medida de
su conformidad con una especificación autorizada de su
comportamiento.

7

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ La fiabilidad (reliability) de un sistema como medida global o como
función de la fiabilidad de cada componente del sistema:

❑ Analizar cada componente: tipo de fallos + fiabilidad + impacto.

❑ Aplicar técnicas para aumentar la fiabilidad.

8

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ Fallos hardware
❑ Fallos {permanentes o transitorios} x

{componentes hardware o subsistemas de comunicación}
▪ Fallos software

❑ Especificación inadecuada
❑ Fallos introducidos por errores en diseño
❑ Fallos introducidos en la programación de componentes software

O
ri

ge
n

 d
e

 lo
s

fa
llo

s

9

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

avería, defectofallo error

Fi
ab

ili
d

ad
 +

 im
p

ac
to

10

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Conceptos básicos

 Los fallos (faults)
 Son las causas mecánicas/algorítmicas de los errores.
 Pueden ser consecuencias de averías en los componentes del sistema.

 Un error (errors)
 Se manifiesta dentro de los valores internos del estado del sistema como

valores distintos a los deseados.

 Una avería o defecto (failure)
 Es una desviación del comportamiento de un sistema respecto de su

especificación.
 Se manifiesta en el comportamiento externo del sistema, pero son el

resultado de errores internos.

https://www.iconfinder.com/icons/1981475/connector_broken_plug_cable_ethernet_icon, https://iconscout.com/icon/broken-cable-1497543, https://www.freepik.com/free-icon/car-crash_856289.htm

avería, defectofallo error

11

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Conceptos básicos

 Los fallos pueden ser pequeños, pero los defectos muy
grandes (tener un gran impacto):

 Un simple bit puede convertir el saldo de una cuenta
bancaria de positivo a negativo

https://www.iconfinder.com/icons/1981475/connector_broken_plug_cable_ethernet_icon, https://iconscout.com/icon/broken-cable-1497543, https://www.freepik.com/free-icon/car-crash_856289.htm

avería, defectofallo error

12

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

componente,

diseño, …

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Fichero corrupto almacenado en el disco.

▪ Consecuencia: avería en el sistema que utiliza el fichero.

▪ ¿Qué provocó el fallo?

❑ Error en el programa que escribió el fichero (fallo de diseño).

❑ Problema en la cabeza del disco (fallo en el componente).

❑ Problema en la transmisión del fichero por la red (fallo HW)

▪ El error en el sistema podría ser corregido
(cambiando el fichero) pero los fallos podrían permanecer.

▪ Importante distinguir entre fallos y errores.

avería, defectofallo error

13

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplos de fallos (1/3)

▪ Explosión del Ariane 5 en 1996

❑ Enviado por la ESA en junio de 1996 (fue su primer viaje)

❑ Coste del desarrollo: 10 años y 7 000 millones de dólares.

❑ Explotó 40 seg. después del despegue a 3 700 metros de altura.

❑ El fallo se debió a la pérdida total de la información de altitud.

❑ Causa: error del diseño software.

❑ El SW del sistema de referencia inercial realizó la conversión de un
valor real en coma flotante de 64 bits a un valor entero de 16 bits.
El número a almacenar era mayor de 32 767 (el mayor entero con
signo de 16 bits) y se produjo un fallo de conversión y una
excepción.

14

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplos de fallos (2/3)

▪ Fallo de los misiles Patriot

❑ Misiles utilizados en la guerra del golfo en 1991 para
interceptar los misiles iraquíes Scud

❑ Fallo en la interceptación debido a errores en el cálculo del tiempo.

❑ El reloj interno del sistema proporciona décimas de segundo que
se expresan como un entero

❑ Este entero se convierte a un real de 24 bits con la perdida de
precisión correspondiente.

❑ Esta pérdida de precisión es la que provoca un fallo en la
interceptación

15

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplos de fallos (3/3)

▪ Fallo en la sonda Viking enviada a Venus
En lugar de escribir en Fortran:

DO 20 I = 1,100

que es un bucle de 100 iteraciones sobre la etiqueta 20, se escribió:

DO 20 I = 1.100

y como los blancos no se tienen en cuenta el compilador

lo interpretó como:

DO20I = 1.100

es decir, la declaración de una variable (O20I) con valor 1.100.

D indica un identificador real

16

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Más ejemplos de fallos…

▪ Historias sobre fallos en:

 http://www.cs.tau.ac.il/~nachumd/verify/horror.html

 https://rollbar.com/blog/10-developer-horror-stories-to-keep-you-up-at-night/#

 https://saucelabs.com/resources/blog/scary-software-bugs

…

17

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tipos de fallos

▪ Fallos permanentes

❑ Permanecen hasta que el componente se repara o sustituye.

❑ Ejemplo: roturas en el hardware, errores de software.

▪ Fallos (temporales) transitorios

❑ Desaparecen solos al cabo de un cierto tiempo.

❑ Ejemplo: interferencias en comunicaciones, fallos
transitorios en los enlaces de comunicación.

▪ Fallos (temporales) intermitentes:

❑ Fallos transitorios que ocurren de vez en cuando.

❑ Ejemplo: calentamiento de un componente hardware.

▪ Objetivo: evitar que los fallos produzcan averías.

18

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tipos de fallos

Defecto

físico

Diseño

incorrecto

HW

inestable

Entorno

inestable

Error del

operador

Error Avería

Permanente

Intermitente

Transitorio

19

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ La fiabilidad (reliability) de un sistema es una medida de

su conformidad con una especificación autorizada de su

comportamiento.

▪ Un sistema es fiable si cumple sus especificaciones.

20

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad

▪ El tiempo de vida de un sistema se representa mediante una

variable aleatoria X

▪ Se define la fiabilidad del sistema como una función R(t)

❑ R(t) = P(X > t)

❑ De forma que:

▪ R(0) = 1 y R() = 0

Tiempo


F

ia
b
ilid

a
d

R(0) = 1

R() = 0

21

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad de un sistema a partir de
la fiabilidad de sus componentes…

22

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Tiempo

F
iab

ilid
ad

R(0) = 1

R() = 01. Modelar fiabilidad
de componente i

2. Componer fiabilidad
(serie|paralelo|k-de-n)

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad: modelar (1/2)

▪ A partir del estudio de los fallos de los componentes
se obtiene la fiabilidad

Tiempo

F
ia

b
ilid

a
d

R(0) = 1

R() = 0

23

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplos de distribuciones

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos (MCyTI), Diseño de Sistemas Distribuidos (MII) 24

Nombre Descripción Gráfica

Exponencial
Usada si la tasa de errores es constante
(generalmente verdadero para
componentes electrónicos)

Normal
Usada para describir los equipos con una
tasa de errores que se incrementa con el
paso del tiempo

Normal
logarítmica

Se encuentra cuando los tiempos de fallo
o reparación dependen de factores que
contribuyen de forma acumulativa (fatiga)

Weibull

Vida característica  (tiempo en el que el
63,2% de población falla) y factor de
forma  (asociado a la tasa de error,
siendo b=1 → tasa de error constante)

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad: componer (2/2)

▪ A partir de la fiabilidad de los componentes es posible
obtener la fiabilidad del sistema

Tiempo

F
ia

b
ilid

a
d

R(0) = 1

R() = 0

25

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema serie

▪ Sea Ri(t) la fiabilidad del componente i

▪ El sistema falla cuando algún componente falla

▪ Si los fallos son independientes entonces

▪ Se cumple que:

▪ La fiabilidad del sistema es menor


=

=
N

i

i tRtR
1

)()(

)()(tRtR i i

26

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema paralelo

▪ El sistema falla cuando fallan todos los componentes

)(1)(donde)(1)(
1

tRtQtQtR ii

N

i

i −=−= 
=

27

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad: resumen

Tiempo

F
ia

b
ilid

a
d

R(0) = 1

R() =

0

1. Modelar fiabilidad de componente

2. Componer fiabilidad (serie|paralelo)

28

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

29

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

𝑅 𝑡 = 1 − 1 − 0.9 3 = 0.999

𝑅 𝑡 = 0.9 ∗ 0.9 ∗ 0.9 = 0.729

𝑅𝑖 𝑡 = 0.9

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

Funcionado
Parado

(en reparación)

Avería/caída

Reparado

30

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Disponibilidad

▪ En muchos casos es más interesantes conocer la disponibilidad

▪ Se define la disponibilidad de un sistema A(t) como la probabilidad de

que el sistema esté funcionando correctamente en el instante t

❑ La fiabilidad considera el intervalo [0,t]

❑ La disponibilidad considera un instante concreto de tiempo

▪ Un sistema se modeliza según el siguiente diagrama de estados:

Funcionado
Parado

(en reparación)

Avería/caída

Reparado

31

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tipos de paradas

▪ Mantenimiento correctivo:

❑ Debido a fallos (reactivo)

❑ No planificados (normalmente)

❑ Ej.: cambiar las bombillas al dejar de funcionar

▪ Mantenimiento preventivo:

❑ Para prevenir fallos (proactivo)

❑ Pueden planificarse

❑ Ej.: cambiar las bombillas al 90% de su vida media

32

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Medida de la disponibilidad

▪ Sea TMF el tiempo medio hasta el fallo

▪ Sea TMR el tiempo medio de reparación

▪ Se define la disponibilidad de un sistema como:

▪ ¿Qué significa una disponibilidad del 99%?

❑ En 365 días funciona correctamente 99*365/100 = 361,3 días

❑ Está sin servicio 3,65 días

Disponibilidad =
TMF

TMF + TMR

33

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tiempo anual sin servicio

Disponibilidad (%) Tiempo sin servicio al año

98% 7,3 días

99% 3,65 días

99.8% 17 horas, 30 minutos

99.9% 8 horas, 45 minutos

99.99% 52 minutos, 30 segundos

99.999% 5 minutos, 15 segundos

99.9999% 31,5 segundos

34

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Cálculo de la disponibilidad
composición

35

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

 Disponibilidad de los elementos:
 Hw.: 99.99 %

 Disco: 99.9 %

 S.O.: 99.99 %

 Aplicación: 99.9 %

 Comunicación 99.9

 Disponibilidad del sistema:
 99.6804 % -> 1,17 días sin servicio

𝐴(𝑡) =ෑ

𝑖=1

𝑁

𝐴𝑖(𝑡)

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

36

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Prevención Tolerancia

Evitación Eliminación R. Estática R. Dinámica

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Técnicas para aumentar la fiabilidad

▪ Prevención de fallos

❑ Evitar que se introduzcan fallos en el sistema antes que
entre en funcionamiento.

❑ Se utilizan en la fase de desarrollo del sistema.
▪ Evitar fallos.

▪ Eliminar fallos.

▪ Tolerancia a fallos

❑ Conseguir que el sistema continúe funcionando
aunque se produzcan fallos.

❑ Se utilizan en la etapa de funcionamiento del sistema.

❑ Es necesario saber los posibles tipos de fallos, es decir,
anticiparse a los fallos.

37

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Técnicas para obtener fiabilidad

tiempo

Fases en

el ciclo

de vida

Especificación,

diseño e

implementación

Estrategia

de

fiabilidad

Evitación de

fallos

Pruebas y

depuración

Eliminación

de fallos

Sistema

en

ejecución

Prevención de fallos

38

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Tolerancia a fallos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Prevención de fallos

▪ Evitación de fallos: evitar la introducción de fallos en el
desarrollo del sistema.

❑ Uso de componentes muy fiables.

❑ Especificación rigurosa, métodos de diseño comprobados.

❑ Empleo de técnicas y herramientas adecuadas.

▪ Eliminación de fallos: eliminar los fallos introducidos durante
la construcción del sistema.

❑ No se puede evitar la introducción de fallos en el sistema
(errores en el diseño, programación).

❑ Revisiones del diseño.

❑ Pruebas del sistema.

39

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Limitaciones de la prevención de fallos

▪ Los componentes hardware se deterioran y fallan.

❑ La sustitución de componentes no siempre es posible:

▪ No se puede detener el sistema.

▪ No se puede acceder al sistema.

▪ Deficiencias en las pruebas

❑ No pueden ser nunca exhaustivas.

❑ Sólo sirven para mostrar que hay errores
pero no permiten demostrar que no los hay.

❑ A veces es imposible reproducir las condiciones reales de
funcionamiento del sistema.

❑ Los errores de especificación no se detectan.

Solución: utilizar (además) técnicas de tolerancia a fallos.

40

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Grados de tolerancia a fallos

▪ Tolerancia completa: el sistema continúa funcionando, al
menos durante un tiempo, sin pérdida de funcionalidad ni de
prestaciones.

▪ Degradación aceptable: el sistema sigue funcionando en
presencia de errores pero con una pérdida de funcionalidad o
de prestaciones hasta que se repare el fallo.

▪ Parada segura: el sistema se detiene en un estado que asegura
la integridad del entorno hasta que el fallo sea reparado.
❑ Trenes
❑ Airbus A320

▪ El nivel de tolerancia a fallos depende de cada aplicación.

41

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos: redundancia

▪ La tolerancia a fallos se basa en el uso de redundancia.

❑ Se utilizan componentes adicionales para detectar los fallos,
enmascararlos y recuperar el comportamiento correcto del sistema.

▪ Precaución:

❑ El empleo de redundancia aumenta la complejidad del sistema y puede
introducir fallos adicionales si no se gestiona de forma correcta.

❑ Los métodos y técnicas son sensibles a los errores en los requisitos
(si está mal descrito el sistema…)

▪ Dos opciones:

❑ Redundancia estática:
Los componentes redundantes se utilizan dentro del sistema para
enmascarar los efectos de los componentes con defectos.

❑ Redundancia dinámica.
La redundancia se utiliza sólo para la detección de errores.
La recuperación debe realizarla otro componente.

42

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Estrategias para diseñar un sistema fiable

Sistema

fiable

Sistema no

redundante

Sistema

redundante

Evitación / prevención

de fallos

detección de

Errores (reinicio)

Sistemas

Tolerantes a fallos

Redundancia

estática

Redundancia

dinámica

43

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Estrategias para diseñar un sistema fiable
hardware

Sistema

fiable

Sistema no

redundante

Sistema

redundante

Evitación / prevención

de fallos

detección de

Errores (reinicio)

Sistemas

Tolerantes a fallos

Redundancia

estática

Redundancia

dinámica

Redundancia
Modular Triple

Duplicación y
comparación

44

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Redundancia modular triple (TMR)

▪ Ejemplo de redundancia estática.

▪ NMR: redundancia con N componentes redundantes

❑ Para permitir F fallos se necesitan N módulos, con N = 2F+1

C

C

V

C: componente

V: votador

entrada salida

C

45

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

0

0,2

0,4

0,6

0,8

1

1,2

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

R(m)

R
(t

m
r)

 v
s
 R

(m
)

R(m)

R(tmr)

▪ Fiabilidad de un sistema TMR es:

❑ Donde Rm es la fiabilidad de un componente

3223
23)1(3 mmmmmTMR RRRRRR −=−+=

• No siempre es mejor un TMR:

– RTMR < Rm si Rm < 0.5

• Cuando la fiabilidad del
componente es muy baja la
redundancia no mejora la
fiabilidad

– Para Rm = 0.9, RTMR = 0.972

Fiabilidad de un sistema TMR

46

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Duplicación y comparación

• Duplicación y comparación

• Ejemplo de detección de errores (reinicio).

• Códigos detectores y correctores

• Ejemplo de redundancia dinámica.

47

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Diseño de sistemas tolerantes a fallos

• Para diseñar un sistema tolerante a fallos sería ideal
identificar todos los posibles fallos y evaluar las técnicas
adecuadas de tolerancia a fallos.
– Sin embargo:

• Hay fallos que se pueden anticipar (fallos en el HW).
• Hay fallos que no se pueden anticipar (fallos en el SW).

– Los errores surgen por:
• Fallos en los componentes.
• Fallos en el diseño.

• Objetivo:
– Maximizar la fiabilidad del sistema.
– Minimizar la redundancia

(↑ Redundancia → ↑ Complejidad → ↑ Probabilidad errores)

48

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fases en la tolerancia a fallos

1. Detección de errores

2. Confinamiento y diagnosis de daños

3. Recuperación de errores

4. Tratamiento de fallos y servicio continuado

49

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

▪ Estas cuatro fases constituyen la base de todas las técnicas
de tolerancia a fallos y deberían estar presentes en el diseño
e implementación de un sistema tolerante a fallos.

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fases en la tolerancia a fallos
1. Detección de errores

▪ El punto de partida es detectar los efectos de los errores
❑ No se busca detectar un fallo directamente.

Su efecto dará lugar a errores en algún lugar del sistema.

▪ Hay que detectar el estado erróneo en el funcionamiento del sistema.

2. Confinamiento y diagnóstico de daños
▪ Posible retraso entre la manifestación de un fallo y su detección:

❑ El fallo puede provocar errores en otras partes del sistema.

▪ Antes de hacer frente al error detectado es necesario:
❑ Valorar alcance de los fallos que pueden generarse.

❑ Limitar la propagación confinando los daños.

3. Recuperación de errores
▪ Tras detectar y confinar el error es necesario recuperar al sistema del error.

▪ Uso de técnicas que transformen el estado erróneo en otro libre de errores:
A. Recuperación hacia atrás: volver a un estado anterior sin errores (checkpoints, n-versiones)

B. Recuperación hacia delante: llevar al sistema a un estado sin errores (código autocorrector).

4. Tratamiento de fallos y servicio continuado
▪ Una vez detectado un error se repara el fallo.

▪ Se reconfigura el sistema para evitar que el fallo vuelva a generar errores.
❑ Cuando los errores fueron transitorios no es necesario realizar ninguna acción.

https://seeklogo.com/vector-logo/144673/umbrella-corporation-residentevil

https://www.creativefabrica.com/es/product/im-fine-zombie-bite-halloween/

https://shenanitims.wordpress.com/2011/12/11/halloween-endurance-test-resident-evil-2007/

https://www.youtube.com/watch?v=qAM8Q8dh8E0

https://www.deviantart.com/dracu-teufel666/art/Resident-Evil-T-VIRUS-251658756

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos 50

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás

Ejecución 1

Punto de

recuperación

Error

Datos

activos

51

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás

Ejecución 1

Punto de

recuperación

Vuelta

atrás

Error

Datos

activos

Dispositivo de

recuperación

Datos de

recuperación

Vuelta atrás

52

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás

Ejecución 1

Punto de

recuperación

Error

Ejecución 2

Región de recuperación

Dispositivo de

recuperación

Datos de

recuperación

Datos

activos

Vuelta atrás

Vuelta

atrás

53

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás
Conceptos

▪ Punto de recuperación (checkpoint): instante en el que se salvaguarda el
estado del sistema.

▪ Datos de recuperación: datos que se salvaguardan.

❑ Registros de la máquina.

❑ Datos modificados por el proceso (variables globales y pila).

▪ Páginas del proceso modificadas desde el último punto de
recuperación.

▪ Datos activos: conjunto de datos a los que accede el sistema después de
establecer un punto de recuperación.

▪ Vuelta atrás: proceso por el cual los datos salvaguardados se restauran
para restablecer el estado.

▪ Región de recuperación: periodo de tiempo en el que los datos de
recuperación de un punto de recuperación están activos y se pueden
restaurar en caso de detectarse un fallo.

54

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.b) Recuperación hacia adelante

▪ Toma como punto de partida los datos erróneos que
sometidos a determinadas transformaciones permiten
alcanzar un estado libre de errores.

▪ Depende de una predicción correcta de los posibles fallos y de
su situación.

▪ Ejemplos:

❑ Códigos autocorrectores que emplean bits de redundancia.

55

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Contenido

▪ Introducción a la tolerancia a fallos

▪ Tolerancia a fallos software

▪ Tolerancia a fallos en sistemas distribuidos

❑ Procesamiento: N-versiones, checkpoint, …

❑ Almacenamiento: replicación y consistencia, snapshots, …

❑ Comunicación: CRC, número de secuencia, retransmisión, …

56

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos
repaso

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ La fiabilidad (reliability) de un sistema es una medida de

su conformidad con una especificación autorizada de su

comportamiento.

▪ Un sistema es fiable si cumple sus especificaciones.

57

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos
repaso

▪ Sistema tolerante a fallos

❑ Sistema que posee la capacidad interna para
asegurar la ejecución correcta y continuada de un sistema
a pesar de la presencia de fallos HW o SW

▪ Objetivo

❑ Conseguir que un sistema sea altamente fiable

▪ Fallos hardware
❑ Fallos {permanentes o transitorios} x

{componentes hardware o subsistemas de comunicación}
▪ Fallos software

❑ Especificación inadecuada
❑ Fallos introducidos por errores en diseño
❑ Fallos introducidos en la programación de componentes software

O
ri

ge
n

 d
e

 lo
s

fa
llo

s

58

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fiabilidad: modelar
fallos de software

▪ Los fallos en SW se deben a fallos en el diseño/implementación.

▪ Funciones típicas de fallos aplicadas al software.

Tiempo


P

ro
b
a
b
ilid

a
d
 d

e
 fa

llo

Tiempo


P

ro
b
a
b
ilid

a
d
 d

e
 fa

llo

▪ Las técnicas de tolerancia a fallos de SW permiten obtener una
alta fiabilidad a partir de componentes de menor fiabilidad

59

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Fases en la tolerancia a fallos de software…

▪ Las técnicas de tolerancia a fallo de software
tienen como base en su diseño e implementación
las siguientes cuatro fases:

1. Detección de errores

2. Confinamiento y diagnóstico de daños

3. Recuperación de errores

4. Tratamiento de fallos y servicio continuado

▪ Las cuatro fases están presentes en las técnicas de
tolerancia a fallos tanto en SW como en HW

60
Sistemas Paralelos y Distribuidos

Félix García Carballeira &

Alejandro Calderón Mateos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

1) Detección de errores

▪ Lo primero es necesario detectar los efectos de los errores.
❑ No se puede detectar un fallo directamente. El efecto de los fallos dará

lugar a errores en algún lugar del sistema.

▪ El punto de partida de cualquier técnica de tolerancia a fallos
es la detección de un estado erróneo en el funcionamiento
del sistema.

▪ Por el entorno de ejecución:
❑ Señales: sistema operativo (ej.: uso de puntero nulo, …).
❑ Excepciones: error hardware (ej.: instrucción ilegal, 0/0, …).

▪ Por el software de aplicación:
❑ Duplicación (redundancia con dos versiones).
❑ Códigos detectores de error.
❑ Validación estructural (asserts).

▪ Comprobar integridad de listas, colas, etc. (# de elementos, punteros redundantes).

61

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

try {

// instrucciones;

// throw

}

cath (exception E) {

// manejador E

}

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

2) Confinamiento y diagnóstico de fallos

▪ Cuando se detecta un error en el sistema, éste puede haber
pasado por un cierto número de estados erróneos antes.
❑ Posible retraso entre la manifestación de un fallo y su detección.

❑ El fallo puede provocar errores en otras partes del sistema.

▪ Antes de hacer frente al error detectado es necesario:
❑ Valorar alcance de los fallos que pueden generarse.

❑ Limitar la propagación confinando los daños.

▪ Estructurar el sistema para minimizar daños causados por los
componentes defectuosos mediante distintas técnicas:
❑ Descomposición modular: confinamiento estático.
❑ Acciones atómicas: confinamiento dinámico.
▪ Mueven al sistema entre estados consistentes.

62

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3) Recuperación de errores

▪ Una vez detectado el error es necesario recuperar al sistema
del error.

▪ Es necesario utilizar técnicas que transformen el estado
erróneo del sistema en otro estado bien definido y libre de
errores.

▪ Prepara el software para poder saltar a un estado sin error:

❑ Redundancia estática
▪ Programación con N versiones

❑ Redundancia dinámica
▪ Puntos de recuperación o Checkpoints (volver atrás)
▪ Programación con códigos autocorrectores (recuperación hacia adelante).

▪ Todos los métodos son sensibles a los errores en los requisitos

63

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

4) Tratamiento de fallos y
servicio continuado

 Una vez que el sistema se encuentra libre de errores es
necesario que siga ofreciendo el servicio demandado.

 Una vez detectado un error:

 Se repara el fallo.

 Se reconfigura el sistema para evitar que el fallo pueda volver a
generar errores.

 Cuando los errores fueron transitorios no es necesario realizar
ninguna acción.

64

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

▪ Prepara el software para poder actualizarse:
❑ Actualización del software y reiniciar sistema
❑ Carga de componentes software actualizados dinámicamente

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Estrategias para diseñar un sistema fiable
software

Sistema

fiable

Sistema no

redundante

Sistema

redundante

Evitación / prevención

de fallos

detección de

Errores (reinicio)

Sistemas

Tolerantes a fallos

Redundancia

estática

Redundancia

dinámica

Programación con
N versiones

Bloques de
recuperación

65

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Redundancia estática

▪ Redundancia estática en el software:

❑ Los componentes redundantes se utilizan dentro del sistema
para enmascarar los efectos de los componentes con defectos

▪ Se aplican las cuatro fases:

1. Detección de errores

2. Confinamiento y diagnosis de daños

3. Recuperación de errores

4. Tratamiento de fallos y servicio continuado

▪ Técnicas principales:

❑ Programación con N versiones

66

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Programación con N versiones

▪ La programación N-versión se define como
la generación independiente de N (N>=2) programas
a partir de una misma especificación.

▪ Los programas se ejecutan concurrentemente, con la misma entrada y sus
resultados son comparados por un proceso coordinador.

▪ El resultado han de ser el mismo.
Si hay discrepancia, se realiza una votación.

versión 1

versión 2

versión 3

votación
SALIDAENTRADA

Avería (no mayoría)

67

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Aplicación de las cuatro fases

▪ Detección de errores:

❑ La realiza el programa votador.

▪ Confinamiento y diagnosis de daños:

❑ No es necesaria ya que las versiones son independientes.

▪ Recuperación de errores:

❑ Se consigue descartando los resultados erróneos.

▪ Tratamiento de fallos y servicio continuado:

❑ Se consigue ignorando el resultado de la versión errónea.

NOTA: Si todas las versiones producen valores diferentes se detecta el error
pero no se ofrece recuperación.

NOTA: Para permitir F fallos se necesitan 2*F+1 módulos

68

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

versión 1

versión 2

versión 3

votación
SALIDA

ENTRADA

Avería

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

La programación de N versiones depende de…

▪ Una especificación inicial correcta.

❑ Un error de especificación aparece en todas las versiones.

▪ Un desarrollo independiente

❑ No debe haber interacción entre equipos de desarrollo.

❑ Uso incluso de lenguajes de programación distintos.

❑ No está claro que programadores distintos cometan errores
independientes.

▪ Disponer de un presupuesto suficiente

❑ Los costes de desarrollo se multiplican.

❑ El mantenimiento también es más costoso.

❑ Para N versiones no está claro si el presupuesto será N veces el
presupuesto necesario para una versión.

69

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Redundancia dinámica

▪ Redundancia dinámica en el software:

❑ Los componentes redundantes sólo se ejecutan
cuando se detecta un error.

▪ Se aplican las cuatro fases:

1. Detección de errores

2. Confinamiento y diagnosis de daños

3. Recuperación de errores

4. Tratamiento de fallos y servicio continuado

▪ Técnicas principales:

❑ Bloques de recuperación

70

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás
repaso

Ejecución 1

Punto de

recuperación

Error

Ejecución 2

Región de recuperación

Dispositivo de

recuperación

Datos de

recuperación

Datos

activos

Vuelta atrás

Vuelta

atrás

71

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás
repaso

▪ Punto de recuperación (checkpoint): instante en el que se salvaguarda el
estado del sistema.

▪ Datos de recuperación: datos que se salvaguardan.

❑ Registros de la máquina.

❑ Datos modificados por el proceso (variables globales y pila).

▪ Páginas del proceso modificadas desde el último punto de
recuperación.

▪ Datos activos: conjunto de datos a los que accede el sistema después de
establecer un punto de recuperación.

▪ Vuelta atrás: proceso por el cual los datos salvaguardados se restauran
para restablecer el estado.

▪ Región de recuperación: periodo de tiempo en el que los datos de
recuperación de un punto de recuperación están activos y se pueden
restaurar en caso de detectarse un fallo.

72

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Bloques de recuperación

▪ Técnica de recuperación hacia atrás.

▪ Un bloque de recuperación es un bloque tal que:

❑ Su entrada es un punto de recuperación.

❑ A su salida se realiza una prueba de aceptación

▪ Sirve para comprobar si el módulo primario del bloque termina en un estado
correcto.

❑ Si la prueba de aceptación falla

▪ Se restaura el estado inicial en el punto de recuperación.

▪ Se ejecuta un módulo alternativo del mismo bloque.

❑ Si vuelve a fallar, se intenta con otras alternativas.

❑ Cuando no quedan módulos alternativos el bloque falla y la recuperación debe
realizarse en un nivel más alto.

73

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Esquema de recuperación

Entrada al

bloque de

recuperación
Prueba

aceptación

Ejecutar

proxima

alternativa

Establecer

punto de
recuperación

¿Quedan

alternativas?

Descartar

punto de

recuperación

Salida del

bloque de

recuperación

El bloque de

recuperacion
falla

No

Si

Restaurar el

bloque de

recuperación

Falla

Pasa

74

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Posible sintaxis para bloques de
recuperación

▪ Puede haber bloques anidados

❑ Si falla el bloque interior, se restaura el punto de recuperación del

bloque exterior.

75

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

ensure < condición de aceptación >

by < módulo primario >

else by < módulo alternativo 1 >

else by < módulo alternativo 2 >

...

else by < módulo alternativo N >

else error;

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Prueba de aceptación

▪ La prueba de aceptación proporciona el mecanismo de
detección de errores que activa la redundancia en el sistema.

▪ El diseño de la prueba de aceptación es crucial para el buen
funcionamiento de los bloques de recuperación.

▪ Hay que buscar un compromiso entre detección exhaustiva
de fallos y eficiencia de ejecución.

▪ No es necesario que todos los módulos produzcan el mismo
resultado sino resultados aceptables.

▪ Los módulos alternativos pueden ser más simples aunque el
resultado sea peor para evitar que contengan errores.

▪ Sobrecarga en aplicaciones de tiempo real

76

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Primitivas necesarias

▪ Establecer punto de recuperación:

❑ Salvaguarda los registros y las páginas modificadas por el proceso
desde el último punto de recuperación.

▪ Anular punto de recuperación:

❑ Se anulan los datos correspondientes a un punto de recuperación y se
libera el espacio ocupado por éstos en el dispositivo de recuperación.

▪ Restaurar punto de recuperación:

❑ Se copian los datos salvaguardados en el dispositivo de recuperación
sobre las copias activas.

77

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Aplicación de las cuatro fases

▪ Detección de errores:

❑ La realiza la prueba de aceptación.

▪ Confinamiento y diagnosis de daños:

❑ Se hace al diseñar el bloque de recuperación.

▪ Recuperación de errores:

❑ Se consigue volviendo atrás y ejecutando otro código.

▪ Tratamiento de fallos y servicio continuado:

❑ Volviendo al estado inicial del bloque de recuperación.

78

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

3.a) Recuperación hacia atrás
Tipos de sistemas

▪ Transparentes a la aplicación:

❑ El establecimiento de los puntos de recuperación y la vuelta atrás
queda bajo el control del hardware o del sistema operativo.

❑ Ventaja: transparencia.

▪ Las aplicaciones pueden transportarse sin problemas.

❑ Inconveniente: pueden establecerse puntos de recuperación en
momentos que no son necesarios (posibles sobrecargas).

▪ Controlados por la aplicación:

❑ El diseñador de la aplicación establece los puntos de recuperación.

▪ Momento adecuado.

▪ Permite minimizar el conjunto de datos a salvaguardar.

❑ Problema: falta de transparencia.

79

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Contenido

▪ Introducción a la tolerancia a fallos

▪ Tolerancia a fallos software

▪ Tolerancia a fallos en sistemas distribuidos

❑ Procesamiento: N-versiones, checkpoint, …

❑ Almacenamiento: replicación y consistencia, snapshots, …

❑ Comunicación: CRC, número de secuencia, retransmisión, …

80

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema distribuido
repaso

Procesador

Nodo 1

Memoria

Procesador

Nodo 2

Memoria

Procesador

Nodo 3

Memoria

81

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema distribuido
repaso

▪ Un sistema distribuido es una colección de ordenadores
independientes que aparecen a sus usuarios como un
único sistema coherente.
❑ Cada sistema tiene su propia memoria (y recursos).

❑ Los sistemas se organizan para ocultar la existencia al usuario final:
transparencia.

❑ Se utiliza primitivas de paso de mensaje o
llamada a procedimiento/método remoto a través de
protocolos de comunicación de red como TCP/IP.

▪ Los sistemas distribuidos se hacen de un gran número de
componentes, lo que dispara la probabilidad de fallo.
❑ Un fallo crítico hace que todo el sistema distribuido deje de funcionar.

82

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema distribuido
repaso

Procesamiento Almacenamiento Comunicación

Hardware

Software

83

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistema distribuido
repaso

Procesamiento Almacenamiento Comunicación

84

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos en comunicación

Procesamiento Almacenamiento Comunicación
o CRC

o # secuencia

o temporizador

85

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Entrega de mensajes fiable

▪ Posibles problemas durante el envío:

❑ Corrupción del mensaje:

El uso de CRC hace que se transforme en mensaje perdido

❑ Duplicación de mensajes:

El uso de número de secuencias para descartar

❑ Perdida de mensaje:

Temporizador y retransmisión de mensaje perdido

Es posible redirigir los mensajes por diferentes caminos

86

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Entrega de mensajes fiable

▪ Posibles soluciones para ellos:

❑ Corrupción del mensaje:

▪ El uso de CRC hace que se transforme en mensaje perdido

❑ Duplicación de mensajes:

▪ El uso de número de secuencias para descartar

❑ Perdida de mensaje:

▪ Temporizador y retransmisión de mensaje perdido

▪ Es posible redirigir los mensajes por diferentes caminos

87

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Necesidades adicionales

▪ ¿Son solo estos los únicos problemas?

❑ No

Ejemplo: puede que se envíe de forma correcta
un mensaje incorrecto (fallo en la aplicación)

▪ Necesarias técnicas para ayudar a solucionarlos...

88

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Necesidades principales ☺

89

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

https://twitter.com/mathiasverraes/status/632260618599403520

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Tolerancia a fallos en software

Procesamiento

o N-versiones

o Checkpoint

Almacenamiento Comunicación

90

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Modelo de sistema distribuido

▪ Modelo de sistema:

❑ Procesos secuenciales {P1, P2, ...Pn} que ejecutan un
algoritmo local

❑ Canales de comunicación

▪ Eventos en Pi

❑ Ei = {ei1, ei2, ...ein}

▪ Tipos de eventos locales

❑ Internos (cambios en el estado de un proceso)

❑ Comunicación (envío, recepción)

▪ Diagramas espacio-tiempo P0
e01 e02 e03 e05e04

e11 e12 e13

P1

91

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Puntos de recuperación en sistemas concurrentes

▪ Tipos de procesos concurrentes:

❑ Independientes: la ejecución de un proceso no afecta a
otros.

▪ La recuperación se realiza como se ha descrito hasta ahora.

❑ Competitivos: los procesos comparten recursos del sistema.

▪ No comparten datos y se tratan como
los procesos independientes.

❑ Cooperantes (dependientes): cooperan e intercambian
información entre ellos.

▪ Una vuelta atrás en un proceso puede provocar estados
inconsistentes en otros.

92

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Efecto dominó

▪ Se produce un conjunto de vuelta atrás no acotado que puede llegar a
reiniciar el sistema concurrente.

▪ Solución: líneas de recuperación

❑ Objetivo: acotar el efecto dominó en caso de realizar una vuelta atrás
encontrando un conjunto de procesos y de puntos de recuperación
que permita hacer volver al sistema a un estado consistente.

P1

P2

R11 R12 R13

R21 R22

IPC1 IPC2 IPC3 IPC4

93

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Detectores de fallos

pi pj

94

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Detectores de fallos

pi pj

Proceso pj falla

X

95

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Detectores de fallos

Pi es un proceso sin fallo que necesita conocer el estado de Pj

pi pj

Proceso pj falla

X

96

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Protocolo basado en ping

▪ De forma periódica pi interroga a pj

pi pj
ping

ack

97

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Protocolo basado en latido

▪ pj mantiene un número de secuencia pj
envía a pi a latido con un nº de sec.
incrementado cada T unidades de t.

pi pj
heartbeat

98

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Modelos de sistemas distribuidos

▪ Modelo síncrono

❑ Relojes sincronizados

❑ Entrega de mensajes acotada

❑ Tiempo de ejecución de procesos acotado

▪ Modelo asíncrono

❑ No hay sincronización de relojes

❑ Entrega de mensajes no acotada

❑ Tiempo de ejecución de procesos totalmente arbitraria

▪ Sistemas parcialmente síncronos

❑ Tiempos acotados pero desconocidos

99

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Propiedades de los detectores de fallo

▪ Completitud: cada proceso con fallo es detectado en algún
momento.

▪ Precisión: cada fallo detectado se corresponde a un proceso con
fallo

▪ En sistemas distribuidos síncronos se pueden garantizar los dos:

❑ En un sistema síncrono los detectores anteriores
siempre son correctos

❑ Si un proceso pj falla, entonces pi detectará el fallo
siempre que pi esté vivo

100

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Propiedades de los detectores de fallo

▪ Completitud: cada proceso con fallo es detectado en algún
momento.

▪ Precisión: cada fallo detectado se corresponde a un proceso con
fallo

▪ En sistemas distribuidos asíncronos los detectores son
completos pero no precisos

❑ No se pueden garantizar simultáneamente en
un sistema distribuido asíncrono
▪ Pérdidas de mensajes

▪ Retardos no acotados en el envío de mensajes

▪ En un sistema asíncrono, los retardos/pérdidas de mensajes no se pueden
distinguir del fallo de un proceso

101

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Replicación (N-copias) e instantáneas
(checkpoint llamado snapshot)

Procesamiento Almacenamiento

o Replicación

o Snapshot

Comunicación

102

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Arquitectura básica de replicación

FEC

FEC

RM

Servicio replicado

RM

RM

Gestores de

Réplicas

Front-End: gestiona la replicación haciéndola

transparente

103

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Replicación

▪ Tipos de replicación
❑ De datos
❑ De procesos

▪ Ventajas
❑ Mejorar el rendimiento (caché)

▪ Es posible mantener los datos cerca de los/as usuarios/as

❑ Mejorar la disponibilidad

▪ Si p es la probabilidad de fallo de un servidor,
con n servidores la probabilidad de fallo del sistema será pn

▪ Problemas que introduce
❑ Consistencia

▪ Requisitos
❑ Transparencia
❑ Consistencia
❑ Rendimiento

104

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Problemas que introduce la replicación

 ¿Cómo mantener la consistencia de las réplicas?

 En un esquema basado en replicación las réplicas pueden tener un
estado inconsistente

 Particiones de red

 Caídas de nodos que gestionan réplicas

 Resolución de conflictos: procedimiento para reconciliar el
estado de diferentes réplicas

 Automático sin intervención manual

 Intervención manual

 Modelos de consistencia de datos
 Describen el comportamiento de las operaciones READ y WRITE sobre

objetos replicados

105

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Modelos de consistencia

▪ Consistencia fuerte:

❑ Utilizan esquemas de replicación pesimistas.

❑ Mantienen una consistencia total dentro del grupo de réplicas.

▪ Consistencia débil:

❑ Utilizan esquemas de control de concurrencia optimistas

❑ Permite actualizaciones locales sin ningún tipo de restricciones

❑ En algún momento se comprueba la consistencia de cada réplica y
aquellas modificaciones que hayan dado lugar a inconsistencias
tienen que anularse o corregirse.

❑ Válidas cuando hay pocos accesos concurrentes en escritura.

106

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos de replicación

▪ Métodos pesimistas: en caso de fallos en la red imponen
limitaciones en el acceso a los datos

❑ Métodos de replicación que aseguran consistencia

❑ Copia primaria (replicación pasiva)

❑ Réplicas activas

❑ Esquemas de votación (quorum)
▪ Estáticos

▪ Dinámicos

▪ Métodos optimistas: no imponen limitaciones

❑ Métodos que no aseguran una consistencia estricta

❑ Ejemplo: el sistema de ficheros CODA

107

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos de replicación

▪ Métodos pesimistas: en caso de fallos en la red imponen
limitaciones en el acceso a los datos

❑ Métodos de replicación que aseguran consistencia

❑ Copia primaria (replicación pasiva)

❑ Réplicas activas

❑ Esquemas de votación (quorum)
▪ Estáticos

▪ Dinámicos

▪ Métodos optimistas: no imponen limitaciones

❑ Métodos que no aseguran una consistencia estricta

❑ Ejemplo: el sistema de ficheros CODA

108

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Copia primaria (replicación pasiva)

 Para hacer frente a k fallos, se necesitan k+1 copias
 Un nodo primario
 K nodos de respaldo

 Funcionamiento SIN fallo:

 Lecturas: se envían a cualquier servidor
 Escrituras: se envían al primario

 El primario realiza la actualización y guarda el resultado
 El primario actualiza el resto de las copias
 El primario responde al cliente
 Las escrituras solo son atendidas por el nodo primario

109

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sincronización de réplicas

110

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Copia primaria (replicación pasiva)

 Para hacer frente a k fallos, se necesitan k+1 copias
 Un nodo primario
 K nodos de respaldo

 Funcionamiento SIN fallo:

 Lecturas: se envían a cualquier servidor
 Escrituras: se envían al primario

 El primario realiza la actualización y guarda el resultado
 El primario actualiza el resto de las copias
 El primario responde al cliente
 Las escrituras solo son atendidas por el nodo primario

 Funcionamiento CON fallo:

 Falla primario: un nodo secundario lo releva (algoritmo de elección)
 Falla secundario: primario guarda los cambios, secundario tras arrancar

le pide dichos cambios.

111

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Implementación con mensajes heartbeat

112

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos de replicación

▪ Métodos pesimistas: en caso de fallos en la red imponen
limitaciones en el acceso a los datos

❑ Métodos de replicación que aseguran consistencia

❑ Copia primaria (replicación pasiva)

❑ Réplicas activas

❑ Esquemas de votación (quorum)
▪ Estáticos

▪ Dinámicos

▪ Métodos optimistas: no imponen limitaciones

❑ Métodos que no aseguran una consistencia estricta

❑ Ejemplo: el sistema de ficheros CODA

113

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Réplicas activas

▪ Todos los nodos sirven peticiones

❑ Mejor rendimiento en lecturas

▪ En escrituras se utiliza un multicast atómico

❑ Se asegura el orden de las escrituras

FE CFEC RM

RM

RM

114

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos de replicación

▪ Métodos pesimistas: en caso de fallos en la red imponen
limitaciones en el acceso a los datos

❑ Métodos de replicación que aseguran consistencia

❑ Copia primaria (replicación pasiva)

❑ Réplicas activas

❑ Esquemas de votación (quorum)
▪ Estáticos

▪ Dinámicos

▪ Métodos optimistas: no imponen limitaciones

❑ Métodos que no aseguran una consistencia estricta

❑ Ejemplo: el sistema de ficheros CODA

115

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Método de votación (quorum)

 Se definen dos operaciones READ y WRITE

 Hay un conjunto de nodos N, que sirven peticiones
 Un READ debe realizarse sobre R copias

 Un WRITE debe realizarse sobre W copias

 Cada réplica tiene un número de versión V

 Debe cumplirse que:

 R + W > N

 W + W > N

 R, W < N

116

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplos de quorums

117

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

https://slideplayer.com/slide/5145879/

A B C D

E F G H

I J K L

A B C D

E F G H

I J K L

A B C D

E F G H

I J K L

NR = 3, NW = 10 NR = 7, NW = 6 NR = 1, NW = 12

(a) (b) (c)
Quorum

de escritura

Quorum
de lectura

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

¿Cómo elegir W y R?

 Se analizan dos factores:

 Rendimiento: depende del % de lecturas y escrituras y su coste

 Coste total = coste L * PR * R + coste W * PW * W

 Tolerancia a fallos: depende de la probabilidad con la que
ocurren los fallos

 Probabilidad fallo = Probabilidad fallo L + Probabilidad fallo W

 Ejemplo:

 N=7

 Coste de W = 2 veces el coste de R

 Porcentaje de lecturas (PR)= 70%

 Probabilidad de fallo = 0.05

118

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Solución

119

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

▪ N=7
▪ Coste de W = 2 veces el coste de R (K)
▪ Porcentaje de lecturas (PR)= 70%
▪ Probabilidad de fallo = 0.05

R W Coste
Probabilidad

de fallo en R

Probabilidad

de fallo en W

Probabilidad

de fallo

1 7

2 6

3 5

4 4

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Solución

120

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

▪ N=7
▪ Coste de W = 2 veces el coste de R (K)
▪ Porcentaje de lecturas (PR)= 70%
▪ Probabilidad de fallo = 0.05

R W Coste
Probabilidad

de fallo en R

Probabilidad

de fallo en W

Probabilidad

de fallo

1 7 4,9

2 6 5,0

3 5 5,1

4 4 5,2

Coste = R * 1 *0,7 + W * 2 * 0,3
= 2*0,7 + 6*0,6 =5

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Sistemas serie, paralelo y k-out-of-n
repaso

121

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Solución

122

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

▪ N=7
▪ Coste de W = 2 veces el coste de R (K)
▪ Porcentaje de lecturas (PR)= 70%
▪ Probabilidad de fallo = 0.05

R W Coste
Probabilidad

de fallo en R

Probabilidad

de fallo en W

Probabilidad

de fallo

1 7 4,9 (0,05)7 1-(0,95)7 9,05 10-02

2 6 5,0 1-R(2,7) 1-R(6,7) 1,33 10-02

3 5 5,1 1-R(3,7) 1-R(5,7) 1,13 10-03

4 4 5,2 1-R(4,7) 1-R(4,7) 1,94 10-04

Coste = R * 1 *0,7 + W * 2 * 0,3
= 2*0,7 + 6*0,6 =5

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Operaciones en el método de votación

 Cada réplica tiene un número de versión V

 READ

 Se lee de R réplicas (Xi, Vi), se queda con la copia que tiene
la versión Vi mayor (la última versión)

 WRITE
 Se realiza en primer lugar una operación READ para determinar el número

de versión actual (V).

 Se calcula el nuevo número de versión (V = V + 1).

 Se actualiza de forma atómica W réplicas con el nuevo valor y número de
versión

 Se inicia un protocolo 2PC para actualizar el valor y el número de versión en W

 Hay que asegurarse que todas las réplicas se comportan como una sola (seriabilidad)

123

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Two-phase commit

▪ Two-phase-commit (2PC)

▪ Denominamos coordinador al proceso que realiza la operación

P0

OK to commit

Grabar en
área temporal

¡Commit!

ok

Hacer los cambios
permanentes

P1 P2

124

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Coordinador (P0 en el ejemplo):

▪ multicast: ok to commit?

▪ recoger las respuestas

todos ok => send(commit)

else => send(abort)

Procesos (P1 y P2 en el ejemplo):

ok to commit => guardar la petición
en un área temporal y
responder ok

commit => hacer los cambios

permanentes

abort => borrar los datos temporales

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Votación jerárquica

▪ El problema del método anterior es que w aumenta con el nº
de réplicas

▪ Solución: quorum jerárquico

❑ Ej.: número de réplicas = 5 x 5 = 25 (nodos hoja)






125

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos de replicación

▪ Métodos pesimistas: en caso de fallos en la red imponen
limitaciones en el acceso a los datos

❑ Métodos de replicación que aseguran consistencia

❑ Copia primaria (replicación pasiva)

❑ Réplicas activas

❑ Esquemas de votación (quorum)
▪ Estáticos

▪ Dinámicos

▪ Métodos optimistas: no imponen limitaciones

❑ Métodos que no aseguran una consistencia estricta

❑ Ejemplo: el sistema de ficheros CODA

126

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Métodos adaptativos dinámicos

▪ Los métodos anteriores (estáticos) no se adaptan a los
cambios que ocurren cuando hay fallos

▪ Ejemplo:

❑ Dado un esquema de votación para 4 réplicas con

▪ R=2 y W=3

❑ Si se produce una partición

❑ No se pueden realizar escrituras

127

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Método de votación dinámica (1/2)

 Cada dato d está soportado por N réplicas {d1...dn}

 Cada dato di en el nodo i tiene un
número de versión VNi (inicialmente 0)

 Se denomina VN actual o AVN(d) = max{VNi}  i

 Una réplica di es actual si VNi = AVN

 Un grupo constituye una partición mayoritaria si
contiene una mayoría de copias actuales de d

128

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Método de votación dinámica (2/2)

 Cada copia di tiene asociado un número entero
denominado cardinalidad de actualizaciones SCi =
número de nodos que participaron en la actualización

 Inicialmente SCi = N

 Cuando se actualiza di

 SCi = número de copias de d modificadas
durante esta actualización

 Un nodo puede realizar una actualización si
pertenece a una partición mayoritaria

129

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Algoritmo de escritura

 i accesible solicita NVi y SCi

M = max{NVi} incluido él

I = {i tal que VNi = M}

N = max{SCi, i  I}

if I  N/2

then

se rechaza la operación (el nodo no pertenece a una partición mayoritaria)

else {

 nodos  I

Actualizar

VNi = M+1

SCi =  I

}

130

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

131

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Ejemplo

▪ N= 5

▪ Inicialmente:

▪ Ocurre una partición:

A B C D E

VN 9 9 9 9 9

SC 5 5 5 5 5

A B C D E

VN 9 9 9 9 9

SC 5 5 5 5 5

Partición 1 Partición 2

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

132
Sistemas Paralelos y Distribuidos

▪ ¿Escritura en partición 2?

❑ M= max{9, 9} = 9

❑ I={D, E}

❑ N= 5 , I = 2  5/2  No se puede realizar

▪ ¿Escritura en partición 1?

❑ M= max{9, 9, 9} = 9

❑ I={A, B, C}

❑ N=5

❑ I = 3 > 5/2  Se puede actualizar

A B C D E

VN 10 10 10 9 9

SC 3 3 3 5 5

Félix García Carballeira &

Alejandro Calderón Mateos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

133
Sistemas Paralelos y Distribuidos

▪ Nueva partición

▪ ¿Escritura en partición 1?

❑ N=max{10,10} = 10

❑ I = {A, B}

❑ N= 3

❑ I = 2 > 3/2  Se puede actualizar

A B C D E

VN 10 10 10 9 9

SC 3 3 3 5 5

Partición 1 Partición 2 Partición 3

Félix García Carballeira &

Alejandro Calderón Mateos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

134
Sistemas Paralelos y Distribuidos

▪ Tras actualización

▪ ¿Escritura en partición 1?

❑ N=max{10,10} = 10

❑ I = {A, B}

❑ N= 3

❑ I = 2 > 3/2  Se puede actualizar

A B C D E

VN 11 11 10 9 9

SC 2 2 3 5 5

Partición 1 Partición 2 Partición 3

Félix García Carballeira &

Alejandro Calderón Mateos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Unión de un nodo a un grupo

▪ Cuando un nodo se une a un grupo tiene que actualizar su
estado:

135

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

M=max{VNi}

I = {Aj, tal que M = VNj}

N = max{SCk, k  I}

if I  N/2
then {

no se puede unir
}

else {
Actualiza su estado
VNi = M
SCi = N +1

}

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Se une la partición 2 y 3

▪ ¿Escritura en partición 2?

❑ M= max{10, 9, 9} = 10

❑ I={C}

❑ N=3

❑ I = 1  3/2  Se rechaza

A B C D E

VN 11 11 10 9 9

SC 2 2 3 5 5

136

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Partición 1 Partición 2

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Se une la partición 1 y 2

▪ ¿Escritura en partición 1?

❑ M= max{11, 11, 10} = 11

❑ I={A,B}

❑ N=2

❑ I = 1  2/2  Se actualiza

A B C D E

VN 11 11 10 9 9

SC 2 2 3 5 5

137

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Partición 1 Partición 2

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Se une la partición 1 y 2

▪ ¿Escritura en partición 1?

❑ M= max{11, 11, 10} = 11

❑ I={A,B}

❑ N=2

❑ I = 1  2/2  Se actualiza

A B C D E

VN 12 12 12 9 9

SC 3 3 3 5 5

138

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Partición 1 Partición 2

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Replicación basada en vectores de versiones
sistema de ficheros CODA

 Método de replicación optimista

 Cada réplica lleva asociado un vector de versiones V con n
componentes = grado de replicación

 En el nodo j , V[j] representa el número de actualizaciones
realizadas en la réplica de j

 Cuando no hay fallos de red todos los vectores son iguales en
todas las réplicas

 Cuando hay fallos de red los vectores difieren

 Dados V1 y V2, V1 domina a V2 sii V1(i)  V2(i)  i

 Si V1 domina a V2 hay más actualizaciones en la copia con V1

 V1 y V2 están en conflicto si ninguno domina al otro

139

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Replicación del sistema de ficheros CODA

▪ Cuando dos grupos se juntan:

❑ Se comparan los vectores

❑ Si el vector de un grupo domina al vector del otro se copia la
copia del primero en el segundo

❑ Si hay conflictos el archivo se marca como inoperable y se
informa al propietario para que resuelva el conflicto.

140

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Tres servidores = {A, B, C}

▪ Inicialmente V = (0,0,0) en los tres

▪ Cuando se realiza una actualización: V=(1,1,1) en los tres

▪ Se produce un fallo de red:

❑ Grupo 1: {A,B}

❑ Grupo 2: {C}

▪ Se produce una actualización sobre el grupo 1

❑ V=(2,2,1) para el grupo 1

▪ Se produce un fallo de red:

❑ Grupo 1: {A}, V=(2,2,1)

❑ Grupo 2: {B, C}

▪ (2,2,1)  (1,1,1)  se actualiza la copia de C y V = (2,2,2) en B y C

141

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

Ejemplo

▪ Se produce una actualización sobre el grupo 2

❑ V=(2,3,3) en {B,C}

▪ Situación 1: se une {A} a {B,C}

❑ (2,2,1)  (2,3,3)  se actualiza la copia de {A} y V =(3,3,3)

▪ Situación 2:

❑ Se modifica la versión de {A}  en A, V= (3,2,1)

❑ Se une A con V=(3,2,1) a {B,C} con V=(2,3,2)

❑ Se comparan (3,2,1) y (2,3,2), ninguno domina  conflicto

142

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

fetch

El teorema CAP
Brewer, PODC 2000

143

Félix García Carballeira &

Alejandro Calderón Mateos Sistemas Paralelos y Distribuidos

Consistency

Partition-resilienceAvailability

A P

C

CP: always consistent, even in a
partition, but a reachable replica
may deny service without
agreement of the others (e.g.
quorum)

CA: available, and consistent,
unless there is a partition

AP: a reachable replica provides
service even in a partition, but may
be inconsistent if there is a failure

Claim: every distributed
system is on one side of
the triangle

Brewer “CAP Theorem”:
C-A-P: choose two

http://arcos.inf.uc3m.es/~ssdd/dokuwiki/lib/exe/detail.php?id=sidebar&cache=cache&media=arcos.jpg

Sistemas Paralelos y Distribuidos
Félix García Carballeira

Alejandro Calderón Mateos

Tolerancia a fallos

	Diapositiva 1
	Diapositiva 2: Ejemplos de sistemas que precisan ser tolerantes a fallos
	Diapositiva 3: Contenido
	Diapositiva 4: Contenido
	Diapositiva 5: Tolerancia a fallos
	Diapositiva 6: Tolerancia a fallos
	Diapositiva 7: Tolerancia a fallos
	Diapositiva 8: Tolerancia a fallos
	Diapositiva 9: Tolerancia a fallos
	Diapositiva 10: Tolerancia a fallos
	Diapositiva 11: Conceptos básicos
	Diapositiva 12: Conceptos básicos
	Diapositiva 13: Ejemplo
	Diapositiva 14: Ejemplos de fallos (1/3)
	Diapositiva 15: Ejemplos de fallos (2/3)
	Diapositiva 16: Ejemplos de fallos (3/3)
	Diapositiva 17: Más ejemplos de fallos…
	Diapositiva 18: Tipos de fallos
	Diapositiva 19: Tipos de fallos
	Diapositiva 20: Tolerancia a fallos
	Diapositiva 21: Fiabilidad
	Diapositiva 22: Fiabilidad de un sistema a partir de la fiabilidad de sus componentes…
	Diapositiva 23: Fiabilidad: modelar (1/2)
	Diapositiva 24: Ejemplos de distribuciones
	Diapositiva 25: Fiabilidad: componer (2/2)
	Diapositiva 26: Sistema serie
	Diapositiva 27: Sistema paralelo
	Diapositiva 28: Fiabilidad: resumen
	Diapositiva 29: Ejemplo
	Diapositiva 30: Tolerancia a fallos
	Diapositiva 31: Disponibilidad
	Diapositiva 32: Tipos de paradas
	Diapositiva 33: Medida de la disponibilidad
	Diapositiva 34: Tiempo anual sin servicio
	Diapositiva 35: Cálculo de la disponibilidad composición
	Diapositiva 36: Tolerancia a fallos
	Diapositiva 37: Técnicas para aumentar la fiabilidad
	Diapositiva 38: Técnicas para obtener fiabilidad
	Diapositiva 39: Prevención de fallos
	Diapositiva 40: Limitaciones de la prevención de fallos
	Diapositiva 41: Grados de tolerancia a fallos
	Diapositiva 42: Tolerancia a fallos: redundancia
	Diapositiva 43: Estrategias para diseñar un sistema fiable
	Diapositiva 44: Estrategias para diseñar un sistema fiable hardware
	Diapositiva 45: Redundancia modular triple (TMR)
	Diapositiva 46: Fiabilidad de un sistema TMR
	Diapositiva 47: Duplicación y comparación
	Diapositiva 48: Diseño de sistemas tolerantes a fallos
	Diapositiva 49: Fases en la tolerancia a fallos
	Diapositiva 50: Fases en la tolerancia a fallos
	Diapositiva 51: 3.a) Recuperación hacia atrás
	Diapositiva 52: 3.a) Recuperación hacia atrás
	Diapositiva 53: 3.a) Recuperación hacia atrás
	Diapositiva 54: 3.a) Recuperación hacia atrás Conceptos
	Diapositiva 55: 3.b) Recuperación hacia adelante
	Diapositiva 56: Contenido
	Diapositiva 57: Tolerancia a fallos repaso
	Diapositiva 58: Tolerancia a fallos repaso
	Diapositiva 59: Fiabilidad: modelar fallos de software
	Diapositiva 60: Fases en la tolerancia a fallos de software…
	Diapositiva 61: 1) Detección de errores
	Diapositiva 62: 2) Confinamiento y diagnóstico de fallos
	Diapositiva 63: 3) Recuperación de errores
	Diapositiva 64: 4) Tratamiento de fallos y servicio continuado
	Diapositiva 65: Estrategias para diseñar un sistema fiable software
	Diapositiva 66: Redundancia estática
	Diapositiva 67: Programación con N versiones
	Diapositiva 68: Aplicación de las cuatro fases
	Diapositiva 69: La programación de N versiones depende de…
	Diapositiva 70: Redundancia dinámica
	Diapositiva 71: 3.a) Recuperación hacia atrás repaso
	Diapositiva 72: 3.a) Recuperación hacia atrás repaso
	Diapositiva 73: Bloques de recuperación
	Diapositiva 74: Esquema de recuperación
	Diapositiva 75: Posible sintaxis para bloques de recuperación
	Diapositiva 76: Prueba de aceptación
	Diapositiva 77: Primitivas necesarias
	Diapositiva 78: Aplicación de las cuatro fases
	Diapositiva 79: 3.a) Recuperación hacia atrás Tipos de sistemas
	Diapositiva 80: Contenido
	Diapositiva 81: Sistema distribuido repaso
	Diapositiva 82: Sistema distribuido repaso
	Diapositiva 83: Sistema distribuido repaso
	Diapositiva 84: Sistema distribuido repaso
	Diapositiva 85: Tolerancia a fallos en comunicación
	Diapositiva 86: Entrega de mensajes fiable
	Diapositiva 87: Entrega de mensajes fiable
	Diapositiva 88: Necesidades adicionales
	Diapositiva 89: Necesidades principales 
	Diapositiva 90: Tolerancia a fallos en software
	Diapositiva 91: Modelo de sistema distribuido
	Diapositiva 92: Puntos de recuperación en sistemas concurrentes
	Diapositiva 93: Efecto dominó
	Diapositiva 94: Detectores de fallos
	Diapositiva 95: Detectores de fallos
	Diapositiva 96: Detectores de fallos
	Diapositiva 97: Protocolo basado en ping
	Diapositiva 98: Protocolo basado en latido
	Diapositiva 99: Modelos de sistemas distribuidos
	Diapositiva 100: Propiedades de los detectores de fallo
	Diapositiva 101: Propiedades de los detectores de fallo
	Diapositiva 102: Replicación (N-copias) e instantáneas (checkpoint llamado snapshot)
	Diapositiva 103: Arquitectura básica de replicación
	Diapositiva 104: Replicación
	Diapositiva 105: Problemas que introduce la replicación
	Diapositiva 106: Modelos de consistencia
	Diapositiva 107: Métodos de replicación
	Diapositiva 108: Métodos de replicación
	Diapositiva 109: Copia primaria (replicación pasiva)
	Diapositiva 110: Sincronización de réplicas
	Diapositiva 111: Copia primaria (replicación pasiva)
	Diapositiva 112: Implementación con mensajes heartbeat
	Diapositiva 113: Métodos de replicación
	Diapositiva 114: Réplicas activas
	Diapositiva 115: Métodos de replicación
	Diapositiva 116: Método de votación (quorum)
	Diapositiva 117: Ejemplos de quorums
	Diapositiva 118: ¿Cómo elegir W y R?
	Diapositiva 119: Solución
	Diapositiva 120: Solución
	Diapositiva 121: Sistemas serie, paralelo y k-out-of-n repaso
	Diapositiva 122: Solución
	Diapositiva 123: Operaciones en el método de votación
	Diapositiva 124: Two-phase commit
	Diapositiva 125: Votación jerárquica
	Diapositiva 126: Métodos de replicación
	Diapositiva 127: Métodos adaptativos dinámicos
	Diapositiva 128: Método de votación dinámica (1/2)
	Diapositiva 129: Método de votación dinámica (2/2)
	Diapositiva 130: Algoritmo de escritura
	Diapositiva 131: Ejemplo
	Diapositiva 132: Ejemplo
	Diapositiva 133: Ejemplo
	Diapositiva 134: Ejemplo
	Diapositiva 135: Unión de un nodo a un grupo
	Diapositiva 136: Ejemplo
	Diapositiva 137: Ejemplo
	Diapositiva 138: Ejemplo
	Diapositiva 139: Replicación basada en vectores de versiones sistema de ficheros CODA
	Diapositiva 140: Replicación del sistema de ficheros CODA
	Diapositiva 141: Ejemplo
	Diapositiva 142: Ejemplo
	Diapositiva 143: El teorema CAP Brewer, PODC 2000
	Diapositiva 144

