
L3: Fundamentals of assembler programming (3)

Computer Structure

Bachelor in Computer Science and Engineering

Bachelor in Applied Mathematics and Computing

Dual Bachelor in Computer Science and Engineering and Business Administration

ARCOS Group

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M2

 Basic concepts on assembly programming

 RISC-V 32 assembly language, memory model and

data representation

 Instruction formats, addressing modes

and instruction sets

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Different language levels

ARCOS @ UC3M3

High-level language
(e.g.: C, Python, …)

Assembly language
(e.g.: RISC-V)

Machine language
(e.g.: RISC-V in binary)

Compiler

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw t0, 0(x2)
lw t1, 4(x2)
sw t1, 0(x2)
sw t0, 4(x2)

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

 An assembly instruction corresponds to a machine instruction

 Example:
 Assembly: add x5, x6, x2

 Machine: 0x002302B3

Félix García Carballeira, Alejandro Calderón Mateos

Instruction and pseudoinstruction

RISC-V32

 A pseudo-assembler instruction corresponds to one or several
machine instructions.

 Example1:

 The instruction: mv x2, x1

 It is equivalent to: add x2, zero, x1

 Example2:
 The instruction: li t1, 0x00800010

 It does not fit in 32 bits, but it can be used as a pseudoinstruction.

 It is equivalent to:
 lui t1, 0x00800

 ori t1, t1, 0x010

 An assembly instruction corresponds to a machine instruction

 Example:
 Assembly: add x5, x6, x2

 Machine: 0x002302B3

ARCOS @ UC3M4

Félix García Carballeira, Alejandro Calderón Mateos

Instruction format

ARCOS @ UC3M5

 A machine instruction is coded in binary:

 Size fits one or more words

 An instruction is divided into fields

 Each field encodes an element that includes the statement

 There may be implicit elements

 Example of fields in a RISC-V instruction:

 The format specifies, for each field of the instruction:

 The meaning of each field

 Encoding used in each field

 Binary, one's complement, two's complement, etc.

 The number of bits in each field

 The size of the fields limits the number of values to be encoded.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

Félix García Carballeira, Alejandro Calderón Mateos

Instruction format

 A machine instruction is self-contained and includes:

 Operation code

 Operands (value or location of value to use)

 Result (location to save)

 Address of the next instruction

 Implicit: PC  PC + '4' (point to the following 32-bit instruction)

 Explicit: j 0x01004 (modifies the PC)

 Usually:
 One architecture offers a few instruction formats.

 Simplicity in the design of the control unit.

 Fields of the same type always of equal length.

 Selection together with the operation code (e.g. add, addi).
 Usually the first field.

ARCOS @ UC3M6

Félix García Carballeira, Alejandro Calderón Mateos

Format length

 The format length is number of bits to encode the instruction

 The size of an instruction is usually one word (or multiples words)

 In RISC-V32 the size of all instructions is one word (32 bits)

 Two types:

 Fixed/Unique length:

 All instructions with the same size

 Examples:

 MIPS32 (32 bits), PowerPC (32 bits), …

 Variable length:

 Different instructions can have different sizes

 How to know the instruction length? → Op. code

 Examples:

 IA32 (Intel processors): variable number of bytes

ARCOS @ UC3M7

Félix García Carballeira, Alejandro Calderón Mateos

Example: instruction format for RISC-V

ARCOS @ UC3M8

31 25 24 20 19 15 14 12 11 7 6 0

R funct7 rs2 rs1 funct3 rd opcode

I imm[11:0] rs1 funct3 rd opcode

UI imm[31:12] rd opcode

S imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

B [12] imm[10:5] rs2 rs1 funct3 imm[4:1] [11] opcode

J [20] imm[10:1] [11] imm[19:12] rd opcode

• opcode (7 bits): partially indicates the type of instruction format.

• Register, Immediate, Upper Immediate, Store, Branch, Jump

• funct7+funct3 (10 bits): together with opcode, describe the op. to perform.

• rs1 (5 bits): specifies the register as first operand.

• rs2 (5 bits): specifies the register as second operand.

• rd (5 bits): specifies the target register.

Félix García Carballeira, Alejandro Calderón Mateos

Operation code

 Fixed size:
 n bits ➔ 2n operation codes

 m operation codes ➔ log2m bits.

 Extension fields
 RISC-V (arithmetic-logic instructions)

 Op = 0; the instruction is encoded in functX

 Variable sizes:
 More frequent instructions= shorter sizes

ARCOS @ UC3M9

31 25 24 20 19 15 14 12 11 7 6 0

R funct7 rs2 rs1 funct3 rd opcode

Félix García Carballeira, Alejandro Calderón Mateos

Locations of operands

ARCOS @ UC3M10

1. In the instruction
li t0 0x123

2. In registers (processor)
li t0 0x123

3. Main memory
lw t0 address(x0)

4. Input/output modules
in t0 0xFEB

10

1
2

3

4

Félix García Carballeira, Alejandro Calderón Mateos

Locations of operands

ARCOS @ UC3M11

1. In the instruction
li t0 0x123

2. In registers (processor)
li t0 0x123

3. Main memory
lw t0 address(x0)

4. Input/output modules
in t0 0xFEB

11

• num(registro): represents the address

obtained by summing num with the address

stored in the register

Félix García Carballeira, Alejandro Calderón Mateos

Example instruction and

associated format in RISC-V

ARCOS @ UC3M12

 add rd rs1 rs2

31 25 24 20 19 15 14 12 11 7 6 0

0000000 rs2 rs1 000 rd 0110011

Félix García Carballeira, Alejandro Calderón Mateos

Exercise

ARCOS @ UC3M13

 A 16-bit computer

has an instruction set of 60 instructions and

a register file of 8 registers.

The following is requested:

Define the format of this instruction: ADDx R1 R2 R3, where

R1, R2 and R3 are registers.

Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M14

 16-bit word defines the size of the instruction

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

16 bits

Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M15

 To encode 60 instructions, 6 bits are required for the

operation code (minimum)

16 bits

6 bits

Operation

code

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M16

 For 8 registers, 3 bits are required (minimum)

16 bits

6 bits 3 bits 3 bits 3 bits

Operation

code

Operands

(3 registers)

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M17

 1 bit left over (16-6-3-3-3 = 1), used for padding

16 bits

6 bits 3 bits 3 bits 3 bits

Operation

code

Operands

(3 registers)

1 bit

word-> 16 bits

60 instructions

8 registers (in RB)

ADDx R1(reg.), R2(reg.), R3(reg.)

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M18

 Basic concepts on assembly programming

 RISC-V 32 assembly language, memory model and

data representation

 Instruction formats, addressing modes

and instruction sets

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 The addressing mode is a procedure for determining the

location of an operand, a result or an instruction

ARCOS @ UC3M19

 Implicit

 Immediate

 Direct

 Indirect

 Relative

• to register

• to memory

• to index register

• base register

• to PC

• to stack

• to register

• to memory

Félix García Carballeira, Alejandro Calderón Mateos

Modos de direccionamiento en RISC-V

ARCOS @ UC3M20

 Immediate value

 Direct

 To memory address

 To register xr

 Indirect

 To memory

 To register (xr)

 Relative to

 register offset(xr)

 stack offset(sp)

 PC beq … label1

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 The addressing mode is a procedure for determining the

location of an operand, a result or an instruction

ARCOS @ UC3M21

 Implicit

 Immediate

 Direct

 Indirect

 Relative

• to register

• to memory

• to index register

• base register

• to PC

• to stack

• to register

• to memory

Félix García Carballeira, Alejandro Calderón Mateos

Implicit addressing

ARCOS @ UC3M22

Description

 The operand is not coded in the instruction but is part of

the instruction.

Example

 auipc a0 0x12345
 a0 = PC + (0x12345 << 12).

 a0 is one operand, PC is the other (implicit)

(V/I)

Advantages /

Disadvantages

 Fast: no need to access memory.

 But it is only possible in a few cases.

op rs 16 bits

Félix García Carballeira, Alejandro Calderón Mateos

Immediate addressing

ARCOS @ UC3M23

Description

 The operand is part of the instruction.

Example

 li a0 0x4f51
 Loads in register a0 the immediate value 0x4f51.

 The value 0x00004f51 is in an immediate field.

(V/I)

Advantages /

Disadvantages

 It is fast: no need to access memory.

 Value does not always fit in a word:
 It does not fit in 32-bits, it is equivalent to:

 lui t1, 0x87654

 ori t1, t1, 0x321

op rs 16 bits

Félix García Carballeira, Alejandro Calderón Mateos

Direct to register addressing
Register addressing

ARCOS @ UC3M24

Description
 Operand is in a register.

Example

 mv a0 a1
 Copies into register a0 the value in register a1.

 The identifier of a0 and a1 is encoded in the instruction.

(V/I)

Advantages /

Disadvantages

 The number of registers is limited

 Access to registers is fast

 The number of registers is small => few bits for encoding,

shorter instructions

op rs1 rs2 16 bits

Register File

Operand

Operand

Félix García Carballeira, Alejandro Calderón Mateos

Direct to memory addressing
Direct addressing

ARCOS @ UC3M25

Description
 The operand is in memory, and the address is coded in the

instruction (not available on RISC-V).

Example

 LD .R1 #0xFFF0 # IEEE 694
 Loads in R1 the word stored in 0xFFF0.

(V/I)

Advantages /

Disadvantages

 Memory access is slower compared to registers

 Long addresses => longer instructions

 Access to a large address space (capacity larger than R.F.)

op rs1 rs2 16 bits

Operand

...

memory

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 The addressing mode is a procedure for determining the

location of an operand, a result or an instruction

ARCOS @ UC3M26

 Implicit

 Immediate

 Direct

 Indirect

 Relative

• to register

• to memory

• to index register

• base register

• to PC

• to stack

• to register

• to memory

Félix García Carballeira, Alejandro Calderón Mateos

Direct vs. indirect addressing

ARCOS @ UC3M27

 Direct addressing indicates

where the operand is located:

 In which register or in which memory

position

 Indirect indicates where

the address of the operand is located:

 This address must be accessed in

memory

 A level (or several) of addressing is

incorporated.

Félix García Carballeira, Alejandro Calderón Mateos

Register indirect addressing

ARCOS @ UC3M28

 The instruction has the register

where the address is stored.

 Example: lw a0 (a1)

 Loads into a0 the value at

the memory address stored in a1.

 V/I

 Wide address space, short instructions

 Pseudo-instruction equivalent to lw a0 0(a1)

op rs rt 16 bits

memory

operand

address

R.F.

Félix García Carballeira, Alejandro Calderón Mateos

Indirect addressing

ARCOS @ UC3M29

 The instruction has the address where the
operand address is stored (not available in RISC-V)

 Example: LD .R1 [#DIR] # IEEE 694

 Loads into R1 the value that is at the memory address
that is stored in memory address #DIR.

 V/I

 Large address space

 Addressing can be nested, multilevel or cascading

 Example: LD .R1 [[[.R1]]]

 May require several memory accesses

 slower instructions to execute

op rs rt 16 bits

memory

address

operand

Félix García Carballeira, Alejandro Calderón Mateos

Addressing modes

 The addressing mode is a procedure for determining the

location of an operand, a result or an instruction

ARCOS @ UC3M30

 Implicit

 Immediate

 Direct

 Indirect

 Relative

• to register

• to memory

• to index register

• base register

• to PC

• to stack

• to register

• to memory

Félix García Carballeira, Alejandro Calderón Mateos

Base-register addressing

ARCOS @ UC3M31

Register RCodop

Instruction

Memory

OperandMemory address

Registers

Displacement

+

• Example: lw a0 12(t1)
– Loads into a0 the contents of the memory position given by t1 + 12

– Uses two fields of the instruction, t1 has the base address

Félix García Carballeira, Alejandro Calderón Mateos

Index-register addressing

ARCOS @ UC3M32

Register RCodop

Instruction

Memory

OperandIndex/displacement

Registers

Address

+

• Example: lw a0 dir(t1)
– Loads into a0 the contents of the memory position given by t1 + dir

– It uses two fields: t1 represents the displacement (index) with respect to

the address dir

Félix García Carballeira, Alejandro Calderón Mateos

Utility: access to vectors

33 ARCOS @ UC3M

int v[5] ;

main ()

{

v[3] = 5 ;

v[4] = 8 ;

v[1] = 3 ;

}

.data

v: .zero 20 # 5int*4bytes/int

.text

main:

la t0 v

li t1 5

sw t1 12(t0)

li t0 16

li t1 8

sw t1 v(t0)

la t0 v

addi t0 t0 4

li t1 3

sw t1 (t0)

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing

ARCOS @ UC3M34

 Registers of 32 bits (4 bytes) in a 32-bits computer

 PC stores the address of the next instruction to be executed

 Points to a word (4 bytes) in memory with the instruction to be executed

 PC in a 32-bits computer is updated by default as PC = PC + 4

memory

instruction

address

PC

Address: Instruction:

0x00400000 or $2,$0,$0

0x00400004 slt $8,$0,$5

0x00400008 beq $8,$0,3

0x0040000c add $2,$2,$4

0x00400010 addi $5,$5,-1

0x00400014 j 0x100001

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing

ARCOS @ UC3M35

 Example: beq a0 x0 label

 The label is encoded as the displacement from the memory address where this

instruction is, to the memory position indicated in label.

 Label encoded as offset (address -> number of instructions to jump)

 If a0 is 0, then PC <= PC + “offset”

op rs rt offset

memory

instruction

address

PC

+

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing in RISC-V

 The beq t0, x1, offset instruction is encoded in the

machine instruction:

 Label must be encoded in the "offset" field as an offset relative to the beq

instruction at the time of execution (PC points to the first byte of the

following instruction)

 The offset value can be positive or negative

 How is PC updated if t0 == x1?

 If the condition is met:
 PC = PC + offset

 If the condition is not met:
 PC = PC + 4

ARCOS @ UC3M36

Félix García Carballeira, Alejandro Calderón Mateos

PC-relative addressing in RISC-V

 What is the value of fin when machine code is generated?

bucle: beq t0, x1, fin

add t8, t4, t4
addi t0, x0, -1

j bucle

fin: mv t1 x0

. . .

 The value of fin is:

 fin == 12

 When an instruction is executed, the PC points to the next one.

 3 instructions ("addi", "j" and "mv") must be skipped.

 Each instruction to be skipped is 4 bytes

ARCOS @ UC3M37

Félix García Carballeira, Alejandro Calderón Mateos

Used in loops

38

li t0 8

li t1 4

li t2 1

li t4 0

while: bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

fin: mv t2 t4

ARCOS @ UC3M

 end represents the

address where the
instruction mv is

stored

 while represents the

address where the
instruction bge is

stored

Félix García Carballeira, Alejandro Calderón Mateos

Used in loops

ARCOS @ UC3M39

li t0 8

li t1 4

li t2 1

li t4 0

while: bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

fin: mv t2 t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li t0 8

li t1 4

li t2 1

li t4 0

bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

mv t2 t4

Address Content

Félix García Carballeira, Alejandro Calderón Mateos

Used in loops

ARCOS @ UC3M40

li t0 8

li t1 4

li t2 1

li t4 0

while: bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

fin: mv t2 t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li t0 8

li t1 4

li t2 1

li t4 0

bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

mv t2 t4

Address Content

• end encoded as displacement relative to

current PC => 3

PC = PC + 3 * 4

• while encoded as displacement relative

to current PC => -4

PC = PC + (-4)*4

Félix García Carballeira, Alejandro Calderón Mateos

Used in loops

ARCOS @ UC3M41

li t0 8

li t1 4

li t2 1

li t4 0

while: bge t4 t1 fin

mul t2 t2 t0

addi t4 t4 1

j while

fin: mv t2 t4

0x0000100

0x0000104

0x0000108

0x000010C

0x0000110

0x0000114

0x0000118

0x000011C

0x0000120

li t0 8

li t1 4

li t2 1

li t4 0

bge t4 t1 12

mul t2 t2 t0

addi t4 t4 1

j -16

mv t2 t4

Address Content

• end encoded as displacement relative to

current PC => 3

PC = PC + 3 * 4 = PC + 12

• while encoded as displacement relative

to current PC => -4

PC = PC + (-4)*4 = PC - 16

Félix García Carballeira, Alejandro Calderón Mateos

Stack addressing

ARCOS @ UC3M42

 The Stack Pointer (SP):

 Is a 32-bits register (4 bytes) in RISC-V32

 It stores the address of the top element on stack

 Points to a word (4 bytes)

 Two types of operations:

 push

 pop

memory

top of stack

address

SP

grows towards

lower addresses

Stack

top

ARCOS @ UC3M43

top

data

top

data

top

data

POP Reg Unstack registry contents (data)

Copies data to the Reg registry

sp

0x00

sp

0x00

PUSH Reg

sp

0x00

Stacks the contents of the record (data)

sp

0x00

grows towards lower addresses

Félix García Carballeira, Alejandro Calderón Mateos

Stack addressing in RISC-V

 RISC-V does not have PUSH or POP instructions.

 The stack pointer register (sp) is visible to the programmer.
 It will be assumed that the stack pointer points to the last element

on the stack

44

PUSH t0

addi sp, sp, -4

sw t0, 0(sp)

POP t0

lw t0, 0(sp)

addi sp, sp, 4

ARCOS @ UC3M44

top top

data
sp

0x00

sp

0x00

top

data

top

data
sp

0x00

sp

0x00

Félix García Carballeira, Alejandro Calderón Mateos

PUSH action in RISC-V32

ARCOS @ UC3M45

 Initial state:

 The stack pointer register (sp) points to the last element at the top
of the stack.

 The t2 register stores the value 9

7

8

sp

…

li t2, 9

addi sp, sp, -4

sw t2 0(sp)

…

Félix García Carballeira, Alejandro Calderón Mateos

PUSH action in RISC-V32

ARCOS @ UC3M46

 4 is subtracted from the stack pointer register in order to

insert a new word on the stack

 addi sp, sp, -4

7

8

sp

…

li t2, 9

addi sp, sp, -4

sw t2 0(sp)

…

Félix García Carballeira, Alejandro Calderón Mateos

PUSH action in RISC-V32

ARCOS @ UC3M47

 The contents of register t2 are inserted at the top of the stack:

 sw t2 0(sp)

9

7

8

…

li t2, 9

addi sp, sp, -4

sw t2 0(sp)

…

sp

Félix García Carballeira, Alejandro Calderón Mateos

POP action in RISC-V32

ARCOS @ UC3M48

 The data stored at the top of the stack is copied to t2 (9)

 lw t2 0(sp)

9

7

8

…

lw t2 0(sp)

addi sp, sp, 4

…

sp

Félix García Carballeira, Alejandro Calderón Mateos

POP action in RISC-V32

ARCOS @ UC3M49

 The sp register is updated to point to the new top of the stack.

 addi sp, sp, 4

 The unstacked data (9) is still in memory but will be overwritten in
future PUSH (or similar memory access) operation.

9

7

8

…

lw t2 0(sp)

addi sp, sp, 4

…
sp

Félix García Carballeira, Alejandro Calderón Mateos

Stack addressing in RISC-V

ARCOS @ UC3M50

 Example: push a0

 addi sp sp -4 # SP = SP - 4

 sw a0 0(sp) # memory[SP] = a0

memory

address

SP

+/-

top of stack

op rs sp sp 4 addi

Félix García Carballeira, Alejandro Calderón Mateos

Exercise

ARCOS @ UC3M51

 Indicate the type of addressing used in the following instructions RISC-V:

1. li t1 4

2. lw t0 4(a0)

3. bne x0 a0 label

Félix García Carballeira, Alejandro Calderón Mateos

Exercise (solution)

ARCOS @ UC3M52

1. li t1 4
 t1 -> direct to register

 4 -> immediate

1. lw t0 4(a0)
 t0 -> direct to register

 4(a0) -> relative to base register

1. bne x0 a0 label
 a0 -> direct to register

 label -> relative to program counter

Félix García Carballeira, Alejandro Calderón Mateos

Examples of addressing modes

ARCOS @ UC3M53

 la t0 label immediate
 The second operand of the instruction is an address

 BUT this address is not accessed, the address itself is the operand

 lw t0 label direct to memory (non- on RV32)
 The second operand of the instruction is an address

 This address must be accessed in order to have the value to work with

 bne t0 t1 label relative to PC register
 The third operand of the instruction is offset with respect to PC

 label is encoded as a two's complement number representing the offset (as words)

relative to the PC register

Félix García Carballeira, Alejandro Calderón Mateos

Examples of instructions

 la t0, 0x0F000002

 Direct to register + immediate.
The 0x0F000002 value is loaded at t0

 lbu t0, label(x0)

 Addresses direct to reg. + relative to base reg.
The byte at memory address label is loaded at t0

 lb t0, 0(t1)

 Addresses direct to reg. + relative to base reg.

The byte in the memory position stored in t1+0 is loaded in t0

Estructura de Computadores54

Félix García Carballeira, Alejandro Calderón Mateos

Contents

ARCOS @ UC3M55

 Basic concepts on assembly programming

 RISC-V 32 assembly language, memory model and

data representation

 Instruction formats, addressing modes

and instruction sets

 Procedure calls and stack convention

Félix García Carballeira, Alejandro Calderón Mateos

Instruction sets

ARCOS @ UC3M56

 Queda definido por:

 Instruction set

 Instruction format

 Registers

 Addressing modes

 Data types and formats

Félix García Carballeira, Alejandro Calderón Mateos

Instruction sets

ARCOS @ UC3M57

 There are different ways for the classification of

the instructions sets:

 By complexity of the instruction set

 CISC vs RISC

 Execution modes

 Stack

 Register

 Register-Memory, Memory-Register, …

Félix García Carballeira, Alejandro Calderón Mateos

CISC vs RISC

ARCOS @ UC3M58

 Complex Instruction Set Computer
 Many instructions
 Complex instructions

 More than one word

 More complex control unit
 Longer execution time

 Irregular design

 Reduced Instruction Set Computer

 Simple and orthogonal instructions:
 Occupy one word

 Instructions on registers

 Use of the same addressing modes for all instructions (high degree of
orthogonality)

 More compact design:

 Easier and faster control unit

 Space left over for more registers and cache memory

 About 20% of the instructions
take up 80% of the total
execution time of a program.

 80% of the instructions are
hardly ever used

 80% of silicon underutilized,
complex and costly

Félix García Carballeira, Alejandro Calderón Mateos

Execution modes

 The execution modes indicates the number of operands
and the type of operands that can be specified in an
instruction.

 0 addresses → Stack.

PUSH 5; PUSH 7; ADD

 1 address → Accumulator register.

ADD R1 -> AC <- AC + R1

 2 addresses → Registers, Register-memory, Memory-memory.

ADD .R0, .R1 (R0 <- R0 + R1)

 3 addresses → Registers, Register-memory, memory-memory.

ADD .R0, .R1, .R2

59

59

ARCOS @ UC3M

L3: Fundamentals of assembler programming (3)

Computer Structure

Bachelor in Computer Science and Engineering

Bachelor in Applied Mathematics and Computing

Dual Bachelor in Computer Science and Engineering and Business Administration

ARCOS Group

	Diapositiva 1: L3: Fundamentals of assembler programming (3) Computer Structure
	Diapositiva 2: Contents
	Diapositiva 3: Different language levels
	Diapositiva 4: Instruction and pseudoinstruction RISC-V32
	Diapositiva 5: Instruction format
	Diapositiva 6: Instruction format
	Diapositiva 7: Format length
	Diapositiva 8: Example: instruction format for RISC-V
	Diapositiva 9: Operation code
	Diapositiva 10: Locations of operands
	Diapositiva 11: Locations of operands
	Diapositiva 12: Example instruction and associated format in RISC-V
	Diapositiva 13: Exercise
	Diapositiva 14: Exercise (solution)
	Diapositiva 15: Exercise (solution)
	Diapositiva 16: Exercise (solution)
	Diapositiva 17: Exercise (solution)
	Diapositiva 18: Contents
	Diapositiva 19: Addressing modes
	Diapositiva 20: Modos de direccionamiento en RISC-V
	Diapositiva 21: Addressing modes
	Diapositiva 22: Implicit addressing
	Diapositiva 23: Immediate addressing
	Diapositiva 24: Direct to register addressing Register addressing
	Diapositiva 25: Direct to memory addressing Direct addressing
	Diapositiva 26: Addressing modes
	Diapositiva 27: Direct vs. indirect addressing
	Diapositiva 28: Register indirect addressing
	Diapositiva 29: Indirect addressing
	Diapositiva 30: Addressing modes
	Diapositiva 31: Base-register addressing
	Diapositiva 32: Index-register addressing
	Diapositiva 33: Utility: access to vectors
	Diapositiva 34: PC-relative addressing
	Diapositiva 35: PC-relative addressing
	Diapositiva 36: PC-relative addressing in RISC-V
	Diapositiva 37: PC-relative addressing in RISC-V
	Diapositiva 38: Used in loops
	Diapositiva 39: Used in loops
	Diapositiva 40: Used in loops
	Diapositiva 41: Used in loops
	Diapositiva 42: Stack addressing
	Diapositiva 43: Stack
	Diapositiva 44: Stack addressing in RISC-V
	Diapositiva 45: PUSH action in RISC-V32
	Diapositiva 46: PUSH action in RISC-V32
	Diapositiva 47: PUSH action in RISC-V32
	Diapositiva 48: POP action in RISC-V32
	Diapositiva 49: POP action in RISC-V32
	Diapositiva 50: Stack addressing in RISC-V
	Diapositiva 51: Exercise
	Diapositiva 52: Exercise (solution)
	Diapositiva 53: Examples of addressing modes
	Diapositiva 54: Examples of instructions
	Diapositiva 55: Contents
	Diapositiva 56: Instruction sets
	Diapositiva 57: Instruction sets
	Diapositiva 58: CISC vs RISC
	Diapositiva 59: Execution modes
	Diapositiva 60: L3: Fundamentals of assembler programming (3) Computer Structure

